Evaluation of Loss of Load Expected in an Integrated Energy System

Bharath Kumar T Dr. O. Chandra Sekhar Dr. Ramamoorthy M
K L University, Green fields, Vaddeswaram, Guntur (Dist), AP, India
tbkumar256@gmail.com

Abstract: The main objective of work presented in this paper is about the prediction of power availability in advance from Energy Sources. The wind is a highly variable energy source and behaves quite different than conventional energy sources. The participation of wind energy with conventional sources of generation is increasing rapidly and it is treated as integrated energy system. In the case of wind energy, velocity predictions are important to assess the power generation in future. The prediction of wind velocity in this paper is further helpful to estimate the reliability analysis of the system. The reliability analysis is done by evaluating the Loss of Load Expected (LOLE). The reliability analysis of complete system with incorporation of wind power along with conventional plants is achieved through prediction of wind power. Hence the loss of load expected to happen in future is helpful to take decisions. The wind velocity predictions are validated with the actual data collected from MOSDAC (Metrological and Oceanographic Satellite Data Archival Centre).

Keywords— Reliability, Loss of Load Expected (LOLE), Wind Power, Integrated Energy System, Normal Distribution, Probability density function.

1. Introduction

Every country is looking for renewable energy sources as an alternative source of generation with increasing demand for electrical power. The development and utilization of renewable resources is becoming a serious consideration due to fast reduction of fossil fuels and environmental considerations [1]. New technologies for electrical power from sun and wind have been developed and considerable research is going on to enhance the performance and also to understand their effect on the operation and economics of electrical power system. Many utilities and researchers consider the wind to be a promising and encouraging alternative for power generation because of the increasing environmental and social benefits [2].

Reliability is a main aspect of power system design and planning [3]-[6]. The economic and social effects of electric supply have significant impacts on both the generation side and the consumers. The power system operation is affected due to system abnormalities such as control failures, disturbances, lightning, faults and human operational errors. Therefore the reliable power supply to the consumers is disturbed [7]. As the wind units are being included along with the conventional power plants, the varying nature of wind makes it difficult to assess the future power output. The prediction of wind velocity is therefore helpful to find the power generation from the complete system including wind units [8]-[15]. The wind velocity predictive models are validated with the data collected from MOSDAC (Metrological and Oceanographic Satellite Data Archival Centre).

This paper presents a method to predict the wind velocity day ahead in advance. It is based on the past one week data. So the power availability of the future is estimated in advance and the reliability analysis is done in terms of Loss of Load Expected (LOLE) [16]-[20]. The probabilistic methods for operating reserves in power system are available in [21]-[22]. The average power availability at load buses through Electrical Circuit Approach is available in [23].

2. Modeling Considerations

The power available in the wind flowing through an area A is given by

\[P_{\text{wind}} = \frac{1}{2} \rho V_w^2 A \]

where A is the area swept by the turbine blades, \(\rho \) is the air density, \(V_w \) is the velocity of the wind. According to the design of wind turbines about 40% of this energy can be extracted [7]-[10].

3. Methodology

The relationship between the power output of the Wind turbine generator and the wind speed is always non linear in nature. The relation can be analyzed by the operational parameters which are the cut-in, rated and cut-off wind speeds. The power out per hour is obtained from the known hourly average wind speed using the following equations [11]-[12].

The power output from the wind plant is given by,

\[P_g = A + BV + CV^2 \]
The complete generation system is divided into two sub systems as conventional and wind units. The integrated energy system comprising of conventional and wind generation is shown in Fig.1. The power output from wind units will partially meet the total demand. In this paper the availability of the power from the wind units is achieved by the prediction of wind velocity. This will give a chance to predict the power availability in future. The power output of conventional units is equal to their rated capacity and is assumed to be constant.

\[
V_n = V_o + \sigma A_n
\]
(6)

Where \(V_n\) = Wind velocity on the \(n^{th}\) day
\(V_o\) = Weekly average wind velocity
\(\sigma\) = Standard deviation of velocity
\(A_n\) = Constant

<table>
<thead>
<tr>
<th>S. No</th>
<th>Day</th>
<th>Wind Velocity (km/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mon</td>
<td>13.5</td>
</tr>
<tr>
<td>2</td>
<td>Tue</td>
<td>15.0</td>
</tr>
<tr>
<td>3</td>
<td>Wed</td>
<td>16.5</td>
</tr>
<tr>
<td>4</td>
<td>Thus</td>
<td>16.0</td>
</tr>
<tr>
<td>5</td>
<td>Fri</td>
<td>14.7</td>
</tr>
<tr>
<td>6</td>
<td>Sat</td>
<td>16.5</td>
</tr>
<tr>
<td>7</td>
<td>Sun</td>
<td>16.3</td>
</tr>
</tbody>
</table>

Table I

Wind Velocity data for one week in a particular hour

Here one week hourly wind velocity is used to obtain the weekly average and the standard deviation of the velocity. The wind velocities in a particular hour of the day changes with the constant \(A_n\) which is assumed to follow a second order polynomial as given in Eq (7). The constant \(A_n\) in Eq (6) is given by

\[
A_n = m_0 + m_1 X + m_2 X^2
\]
(7)

Where the \(n\) and \(X\) constant correspond to the day number and \(m_0, m_1, m_2\) are the constants. The profile of the wind velocity in a particular hour of the day is shown the Fig. 2. From which \(V_o\) and \(\sigma\) are obtained.

Fig.2. Profile of wind velocity

From Eq (6), the constants \(A_0\) to \(A_7\) for the particular hour in the week are calculated and using Eq (7) constants \(m_0, m_1, m_2\) are evaluated by minimizing the error in the calculation of \(A_n\). The average wind
velocity and standard deviation computed for the week are 15.5 km/hour and 0.01 respectively. From this data using the previously calculated constants m_0, m_1, m_2, the wind velocity of the 8th day for the hour under consideration is computed one day ahead. It is assumed that the weekly average wind velocity V_0, and the standard deviation σ calculated from the past one week remain same for the day ahead prediction of wind velocity and the constant A_8 for the 8th day is obtained from Eq (7). From the computed wind velocity, the power availability from the wind unit is calculated using the Eq (2). For the conventional generators the power availability is assumed to be equal to their capacity multiplied by the availability index.

Similar procedure is used for predicting the load for a particular hour on the 8th day based on the load data available over the past week. The load profile for the particular hour during the past one week is shown in Fig.3. From this the weekly average load and its standard deviation are obtained as $P_0 = 495.2$ MW, $\sigma = 0.06$. For the predicted load on the 8th day, the same parameters are used. The wind power generation and load are variable in nature. The predicted wind power generation and the load on 8th day are the hourly average values and their variation over the hour is assumed to follow normal distribution as shown in Fig.4. The Fig.5 shows the cumulative distribution function. Where X is the variable and $X_{average}$ is the average value over the hour. So X_0 is equal to 1 and σ is taken from the past one week hourly data of the variable.

Based on the probability theory for normal distribution the variable, $\frac{X}{X_{average}}$ will stay between the limits $(1 - 2\sigma)$ and $(1 + 2\sigma)$ with a confidence level of 95%. The variable X represents wind generation / load on 8th day for the specified hour with respective average values and standard deviation.

The total power generation includes conventional power (P_{CG}) and wind power (P_{WG}). P_{CG} is assumed to be constant and P_{WG} has the normal distribution. Fig.6 represents the probability distribution of the wind generation and the total generation. To obtain the probability density for the wind generation the value of X_0 is the average wind power.
4. Results and discussion

The availability of the power for the 8th day is estimated by the above mentioned method using the following data. The complete system contains the three conventional generators units and two wind generator units shown in Fig.1.

The total estimated demand for the system is 600 MW for the particular hour on the 8th day. The total power generation capacity from the conventional plants is 450 MW and power capacity from the wind units is 150 MW at the rated wind speed \(V_r \) of 21 km/hour and cut-in speed \(V_i \) of 12 km/hour.

To obtain the probabilistic estimate of the available power from the conventional and wind generator units the failure and repair rates (\(\lambda \) & \(\mu \)) are assigned for each unit. The data for the estimation of probability of loss of load is given below. The failure rate and repair time of the each unit are given in the following Table II and III.

Table II
Reliability data for the Conventional Units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit I</th>
<th>Unit II</th>
<th>Unit III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power (MW)</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Failure Rate (\lambda) (Fails/Year)</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Repair Rate (\mu) (Hours/Year)</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Availability</td>
<td>0.88235</td>
<td>0.9</td>
<td>0.91836</td>
</tr>
<tr>
<td>Unavailability</td>
<td>0.11764</td>
<td>0.1</td>
<td>0.081632</td>
</tr>
</tbody>
</table>

Table III
Reliability data for the Wind Units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit I</th>
<th>Unit II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power (MW) at rated wind velocity</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Failure Rate (\lambda) (Fails/Year)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Repair Rate (\mu) (Hours/Year)</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Availability</td>
<td>0.93023</td>
<td>0.93023</td>
</tr>
<tr>
<td>Unavailability</td>
<td>0.06976</td>
<td>0.06976</td>
</tr>
</tbody>
</table>

The constants \(m_1, m_2, m_3 \) in the Eq (7) for the wind velocity are -0.3587, -1.19485, 0.25691 respectively. The constants in the Eq (6) are given in Table IV. These constants are calculated using the past available data. These constants are useful in the further calculations of the second order polynomial.
Table IV

<table>
<thead>
<tr>
<th>Constants</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>-5.01924</td>
</tr>
<tr>
<td>A₂</td>
<td>-1.2548</td>
</tr>
<tr>
<td>A₃</td>
<td>2.50962</td>
</tr>
<tr>
<td>A₄</td>
<td>1.2548</td>
</tr>
<tr>
<td>A₅</td>
<td>-2.00769</td>
</tr>
<tr>
<td>A₆</td>
<td>-2.5096</td>
</tr>
<tr>
<td>A₇</td>
<td>2.0076</td>
</tr>
</tbody>
</table>

The Graphical representation of availability of conventional generating units is given in Fig.8.

Based on the weekly wind data given above and adapting the procedure discussed above, the 8th day wind velocity is obtained as 18.168 km/hour and using the Eq (2) wind generated power is 93.99MW. The generation capacity is 600MW.

The power availability from the conventional generators is given by Probability of availability * Capacity= 406.907MW (P_{CG}).

Similarly for the average power available from the wind units is 87.43MW (P_{WG}). The probability of power availability for the conventional and wind units are calculated from the failure and repair rates of the corresponding unit [23].

Therefore the power available from the Conventional and wind generator units is 494.33MW (P_{CG} + P_{WG}) and this generation varies between the limits P_{CG} + P_{WG}(1 - 2\sigma₉) to P_{CG} + P_{WG}(1 + 2\sigma₉), where \sigma₉ is the standard deviation of the average wind velocity equal to 0.01. Similarly the average load on the 8th day is \(\overline{P_{Lo}} \) and varies between \(\overline{P_{Lo}}(1 - 2\sigma₉) \) to \(\overline{P_{Lo}}(1 + 2\sigma₉) \), where \(\sigma₉ \) is the standard deviation for the average load. The average load demand on 8th is 501.34 MW.

The expected loss of load during the specified hour on the 8th day is 5.6 MW from the area calculated in Fig.7. Similar procedure can be adapted for the other hours of the day. The daily loss of load probability can then be estimated.

In the present study, \(X_{\text{average}} \) is the average load (Q) at the specified hour on the 8th day. Its standard deviation \(\sigma_{\overline{Q}} \) is assumed to be same as that calculated from the past seven days data which is equal to 0.06. Based on the confidence level of 95% the available power at load will lie between the limits 0.87Q and 1.15Q. So the load varies between 397.24 MW to 571.93 MW with a confidence limit of 95% shown in Fig.9. The variation of LOLE on 8th day at each hour is plotted in Fig.10.

![Fig.8. Availability of Conventional Generating Units](image)

![Fig.9. Variation of load and Limits](image)

![Fig.10. Variation of LOLE on 8th day](image)

5. Conclusion

Evolution of loss of probability of load in an integrated energy system has been presented in this paper where some wind units and conventional units are considered to study. The probabilistic availability of power generated from the wind units is evaluated by considering the hour wind velocity data. The Loss of load expected (LOLE) is predicted in advance through the proposed methodology. The reliability index LOLE is estimated in advance and it will help to take decisions for power system planners. The velocity predictions are validated by MOSDAC.
Acknowledgments

The authors sincerely thank and acknowledge the contribution of MOSDOC (Meteorological & Oceanographic Satellite Data Archival Centre), Government of India by providing necessary data to conduct this research.

References

