GALVANIC COUPLING - EMC OF ELECTRICAL SYSTEMS (PART III.)

Irena KOVÁČOVÁ
Department of Electrical Drives and Mechatronics, Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, E-mail: Irena.Kovacova@tuke.sk

Dobroslav KOVÁČ
Department of Theoretical Electrotechnics and Electrical Measurement, Park Komenského 3, 042 00 Košice, Slovak Republic, Tel: +421-55-60222024; Fax: +421-55-6330115
E-mail: Dobroslav.Kovac@tuke.sk

Abstract This paper deals with the analysis of the electromagnetic compatibility (EMC) – galvanic coupling problems focused to the area of power electrical systems. The description of galvanic coupling problem is divided into few separate parts according to the length of common conductors or the working frequency. The third one (PART III.) analyzes problem for circuits with distributed parameters and one long common conductor or processed signals with high working frequency. For detailed problem investigation a mathematical analysis, computer simulation method and verification measuring are used, too.

Key words: electromagnetic compatibility, galvanic coupling, common conductors, long lines.

1. Introduction
The problem of galvanic coupling deals with individual electric equipments or their parts, which are interconnected in such a way, that minimum one common conductor connects these equipments and so mutual influence is generated.

2. Solution for the Higher Frequencies and Distributed Parameters
The working frequencies and the length of common conductor must be taken always into account. In all cases of the galvanic coupling, the fact that electrical components are not ideal and so they are containing certain parasitic capacitances, inductances and real resistances is valid. Due to higher working frequency of currents flowed by the common conductors, they must be taken as circuits with distributed parameters, during the process of predictive result galvanic coupling investigation. If the working frequencies will be lower, then the interconnecting circuits can be taken as circuits with concentrated parameters.

2.1. One common conductor - Theoretical analysis
The electric circuits interconnection realized by one common conductor with the distributed parameters, is a special case, where more electric circuits are utilizing one common conductor, which is either long or serves for high frequency signal conduction, as it is pictured in figure Fig. 1.

![Fig. 1. The circuit interconnection by one common conductor - higher frequencies](image)

The problem analysis will be done for the case of two electric circuits interconnection, the scheme of which is shown in figure Fig. 2. Let the upper circuit be supplied by a DC voltage source with the value $U_1 = 5 \text{ V}$. As interface conductor the same cable as in the previous case was used, it means CYSY 4x1,5 mm2 with the length 15m and with parameters $R_0 = 0,047 \, \Omega/m$, $L_0 = 343 \, \text{nH/m}$, $G_0 = 33,3 \, \mu\text{S/m}$, $C_0 = 118 \, \text{pF/m}$.

![Fig. 2. The scheme of investigated circuit connection](image)
The upper circuit has no signal change. The output voltage u_2 should be reflecting only voltage drops caused by long line longitudinal resistance and a vertical drop-in. Let the lower circuit be supplied by the same periodical impulse signal u_1' as in the case of previous analysis. It is possible to state the mutual circuit galvanic coupling influence by finding the upper circuit real voltage u_2 course. According to 2nd Kirchoff's law, we can write equation for the investigated circuit:

$$u_2 = U_1 - u_1 + u_2 - R_o I_1 = U_1 - u_1 + u_2 - R_o \frac{U_1}{R_1 + G_0 + R_o} \tag{1}$$

The analytical form for voltages u_1' and u_2' the description can be obtained from previous analysis, as equations for input and output voltages of long transmission line. By the substituting of these voltages, the searched relation for time dependence of voltage u_2 is possible to receive. Any accessible Excel program will do graphical interpretation of the resulting solution again, figures Fig. 3 up to Fig. 6.

2.2. One common conductor – Simulation and Measuring

Equally, as in the previous case multiple verification of correctness can be done by the PSPICE program simulation and by practical measurement. The results are presented in figures Fig. 7. and Fig. 8.

Fig. 3. The input voltage U_1

Fig. 4. The input voltage u_1'

Fig. 5. The output voltage u_2'

Fig. 6. The output voltage u_2
The coincidence of the obtained results is evident. Small differences concerning the input and output voltage oscillation damping are given by the fact, that for the input and output voltage the infinite Fourier’s series were replaced by only the first 40 components in the Excel program. The measured courses voltages of the voltages are pictured in next figures Fig. 9. up to Fig. 12.

3. Conclusion
All performed analyzes indicate, that the derived equations are correct and can be utilized for predictive stating of galvanic coupling influence. Based on above-mentioned, the fact, that derived equations are valid, results in the conclusion, that they can be utilized by electrical equipment constructors for the creation of construction vision, which concerns of galvanic coupling influence.

Acknowledgement
The paper has been prepared by the support of Slovak grant project VEGA No. 1/4174/07, VEGA No. 1/0660/08 and KEGA 3/5227/07, KEGA 3/6388/08.

References