Abstract: The paper presents a double stator winding induction generator (DSWIG) used in renewable energy systems. The generator has a squirrel-cage rotor and a two separate stator windings. The main winding is connected to a DC bus through an inverter. The auxiliary winding is connected to a capacitor bank, in order to ensure a part of the necessary reactive power, in parallel with an unpretentious (resistive) load. At low speed the inverter produces the required reactive power necessary for magnetization. At high speed, the reactive power of the capacitor bank is considerable, reducing the apparent power of the inverter. A designing method for the capacitor bank is presented, considering the self excitation phenomenon.

Key words: Induction Generator, Renewable Energies, Excitation Control.

1. Introduction

The cage-type induction generators represent an advantageous solution due to their main advantages: good dynamic performance, brushless, no additional power DC sources, low maintenance demands and good overload protection ability [1]-[3].

When the induction generator is connected directly to the grid, it works at approximately constant speed. These kinds of energy systems require a turbine with adjustable parameters, which is hard to realize and expensive at low power [4]. Other drawbacks are related to the difficulty to adjust the reactive power and the poor performance of the output voltage [5]. A fully controllable generator for variable speed turbine can be made using an inverter (Fig. 1). In this configuration the inverter needs to be designed at rated power.

An alternative could be a wound rotor induction generator, connected through a “back-to-back” converter to the grid, in parallel with the stator windings, in so called DFIG system, as presented in Fig. 2 [6]-[8]. The apparent power of the inverter in this case is 25% smaller compared with the structure on Fig. 1, but the brushes are the main disadvantage of this scheme.

The solution presented in this paper is a split wound induction machine, where the stator has two three-phase windings, with the same poles pair number (DSWIG).
In the first case (Fig. 3a) the excitation phase is directly connected to a fixed capacitor bank, and the apparent power is reduced up to 40%. In the second case (Fig. 3b) a voltage source inverter is used to provide variable reactive power.

The self-excited phenomenon must be taken into consideration when choosing the capacitors. In Fig. 3b the main winding is directly connected to a rectifier bridge, and carries all the active power. The auxiliary winding is designed for a higher voltage in order to reduce the inverter current. In Fig. 3a the excitation winding ensures only the reactive power, and the main winding gives both active and reactive power. In Fig. 3b the main winding gives only active power [10]-[11].

In a DSWIG the windings are mutually coupled, with different inductances due to their position within the slots. In the presented case the stator windings are placed in the same slots.

The DSWIG windings have a larger weight and volume than the classical induction generator, but in variable speed and load, encountered in both wind and hydro turbines of low power, the performance and total cost of DSWIG and static converter are improved.

An active rectifier (on the main winding) and a diode rectifier (on the auxiliary winding) are used for a better utilization of copper (Fig. 4). Both are designed for half of the rated power. The auxiliary winding is connected to the DC bus through a three phase inductances and a diode rectifier. At low speeds only the main winding supplies energy to the DC bus. At high speed both windings deliver into the DC bus. In this case, the inverter can control the active and reactive power distribution in the DSWIG windings.

In the proposed solution a part of the power is delivered directly to some AC unpretentious loads that are connected to the auxiliary winding (Fig. 5).

In Fig. 3a the excitation phase is delivered directly to a fixed capacitor bank, and the apparent power is reduced up to 40%. In the second case (Fig. 3b) a voltage source inverter is used to provide variable reactive power.

For example, in a wind turbine the unpretentious loads will be connected only when the available energy is larger than 50% of the rated power which means that the turbine speed will be larger than 80% of the rated speed.

In the next sections an analytical description of DSWIG is presented. Then the capacitor bank is designed. Finally, digital simulation and experimental results, performed on a laboratory setup, validate the theoretical considerations.

2. DSWG - equivalent scheme and equations

In the dynamic model of DSWG the excitation and rotor winding parameters are reduced to the main winding. Equivalent electrical diagram of DSWG, including unpretentious loads, is shown in Fig. 6.

The steady state equation (1) is presented in matrix form for sinusoidal currents, were:

- V_2 is the auxiliary voltage;
- V_2' is the phase auxiliary voltage related to the main winding;
- I_2 is the phase auxiliary current related to the main winding;
- k is the related factor;
- k_{m1} and k_{w1} are the winding factor;
- L_{i1} and R_l are the leakage inductance and resistance of the main winding;
- L_{i2} and R_l are the auxiliary leakage inductance and resistance related to the main winding;
- L_{i1} and R_l are the leakage inductance of the main and auxiliary windings;
- L_m is the magnetization inductance;
- L_{i1} and R_l are the rotor leakage inductance and resistance related to the main winding;
- C' is the capacitor bank related to the main winding;
- R' is the auxiliary load;
- P_{mec} corresponds to the mechanical losses.
The DSWIG parameters are presented in the next table [12]. They were determined with the unsaturated machine core.

Table 1. The DSWIG parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>0.99</td>
</tr>
<tr>
<td>R_1</td>
<td>4.2 [Ω]</td>
</tr>
<tr>
<td>R_2</td>
<td>2.5 [Ω]</td>
</tr>
<tr>
<td>R_r</td>
<td>2.2 [Ω]</td>
</tr>
<tr>
<td>R_m</td>
<td>1418 [Ω]</td>
</tr>
<tr>
<td>$L_{1σ}$</td>
<td>0.95 [mH]</td>
</tr>
<tr>
<td>$L_{12σ}$</td>
<td>12.54 [mH]</td>
</tr>
<tr>
<td>$L_{12σ}$</td>
<td>23.41 [mH]</td>
</tr>
<tr>
<td>L_m</td>
<td>9.03 [mH]</td>
</tr>
<tr>
<td>P_{mech}</td>
<td>345.44 [mH]</td>
</tr>
<tr>
<td>P_{mech}</td>
<td>58 [W]</td>
</tr>
</tbody>
</table>

The capacitor bank must be designed in order to offer enough reactive power, but at the same time not too much as to create self-excited phenomenon.

The energy stored in capacitors must be lower than the magnetization energy. This fact is shown below:

$$\omega_1 \geq \frac{1}{\omega_1 C} \geq \omega_1 \cdot L.$$

According to the Table 1 values, the capacity is computed to avoid the self-excited phenomenon at $\omega_1=200 [\text{rad/s}]$.

$$L_L = L_{2σ} + L_{12σ} + L_m = 0.38 \ [\text{H}],$$

For $X_C = X_L$ we obtain

$$C = \frac{1}{\omega_1^2 L} \Rightarrow C = 65.5 \ [\mu\text{F}];$$

A smaller value ($C = 60 \ [\mu\text{F}]$), was chosen in order to secure the system against self-excitation phenomenon.

The energy stored in capacitors must be lower than the magnetization energy. This fact is shown below:

$$\omega_1 = 200 \ \left[\frac{\text{rad}}{s}\right] \Rightarrow f = 31.84 \ [\text{Hz}] \Rightarrow 60 \cdot 10^{-6} < 65.54 \cdot 10^{-6};$$

$$\omega_1 = 210 \ \left[\frac{\text{rad}}{s}\right] \Rightarrow f = 33.43 \ [\text{Hz}] \Rightarrow 60 \cdot 10^{-6} > 59.45 \cdot 10^{-6};$$

From previous calculations is observed that up to a speed of 200 [rad/s] the capacitor can’t provide enough reactive energy to excite the machine. The self-excited danger appears only over this rotation speed.
The self-excited phenomenon was simulated in Matlab / Simulink with DSWIG as generator, with a large resistance connected to the main winding terminals: $R_{load}=1500 \, \Omega$, and the capacitor battery connected to the auxiliary winding terminals (Fig. 7). There have been introduced various values of capacitors to view the behavior of the machine at 200 [rad/s].

The saturated model of the machine (16) was tuned from magnetization inductance observed from FEM (finite element method) simulation. In this way it could get the high sinusoidal voltage necessary to determine the inductances.

$$L_m = \frac{k_{sat1} I_{20}^2 + 1}{k_{sat3} I_{20}^2 + k_{sat2} I_{20}^2} \cdot L_{m0}, \quad (16)$$

$$\sum L = L_m + L_{2\sigma} + L_{12\sigma}, \quad (17)$$

where $I_{2\sigma}$ represent the peak auxiliary current.

Fig. 8 shows the self-excited phenomenon obtained from simulation, at $\omega = 212.8 \, [\text{rad/s}])$, $C = 60 \, [\mu\text{F}]$.

![Simulink block diagram to simulate self-excited phenomenon](image)

Fig. 7. The Simulink block diagram to simulate self-excited phenomenon

The auxiliary voltage winding increases with the speed, as it is shown in Fig. 10 where significant difference between test and simulation voltage (Sim 1) could be observed. This error is produced by the difference from the magnetization inductance curve obtained from FEM, and the real one. Fortunately, a new magnetization inductance curve could be computed from the self-excited test (Fig.11).

In the following chart, the blue curve represents the actual voltage obtained in the laboratory. With this one was calculated the inductance versus to the current amplitude (18). In Fig. 11 it can be noted comparison between inductance obtained from FEM (Sim 1 curve) and another inductance obtained from calculations (the blue one).

$$L_m + L_{2\sigma} + L_{12\sigma} = \frac{U_{2/\sigma}}{\omega_{2/\sigma} I_{2/\sigma}}, \quad (18)$$
With the magnetization inductance from the experiments the coefficients of the new magnetization inductance were recalculated. They are presented in Table 2.

With these new coefficients, the simulation was repeated for a capacity of 60[μF] and it was observed that the self-excited phenomenon occurs at a speed greater than 200[rad/s].

Table 2. The magnetization inductance coefficients (16)

<table>
<thead>
<tr>
<th>The coefficients</th>
<th>Sim1 (FEM)</th>
<th>Sim 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{lsat1}</td>
<td>0.03</td>
<td>0.0195</td>
</tr>
<tr>
<td>k_{lsat2}</td>
<td>0.0137</td>
<td>0.0197</td>
</tr>
<tr>
<td>k_{lsat3}</td>
<td>0.0036</td>
<td>0.0018</td>
</tr>
</tbody>
</table>

4. Load operation of DSWG
The capacitor battery supplies the DSWG with almost the entire reactive power at the maximum speed and no load operation, this way the total apparent power of the inverter is reduced. At low speed the capacitor battery offer less reactive power, but the inverter still magnetize the generator.

In the next figures is represented the influence of the capacitor value on reactive power consumption.

In this experiment, the wind turbine was emulated by a 11 [KW] induction motor driven by a bidirectional inverter. The inverter has limitation in current, speed, and torque, with the possibilities to prescribe the needed torque. The rated torque of the drive motor is denoted with Mn and it is equal with 140[Nm]. This fact is used to load the DSWG at different torques and speeds. The active power from the inverter doesn’t depend on the capacitor bank presence (Fig.12), while the reactive power is decreasing when capacitor bank is connected (Fig.13).
The DSWIG capability to generate different active power on the two windings was proven in laboratory test, at different speeds. The capacitor battery still remains connected to the auxiliary winding, in parallel with unpretentious load. The test results can be seen in the following graphs.

The test results without capacitor battery at speed \(\omega = 190 \frac{\text{rad}}{\text{s}} \), drive torque \(M=30\%Mn \) [Nm] and \(R_{\text{load}}=110[\Omega] \) is shown in Fig.14. The powers measured during this experiment are:
- the power on the resistance=844 [W];
- the power delivered to the DC bus=661 [W];
- the reactive power through the inverter=1421 [VAR];

The test results with capacitor battery at speed \(\omega = 190 \frac{\text{rad}}{\text{s}} \), drive torque \(M=30\%Mn \) [Nm] and \(R_{\text{load}}=110[\Omega] \) is shown in Fig.15. The powers measured during this experiment are:
- the power on the resistance=792[W];
- the power on the electronic load=700[W];
- the reactive power through the inverter = 811 [VAR];

The DC voltage source is used to power the DSWG as a motor, through the inverter. The drive motor spins the DSWG as a generator. When the DC voltage is greater than the DC source voltage, the diode D is blocked.
Fig. 14. Experimental results without capacitors: a) the main winding currents, b) the main winding voltage, c) the resistive load current, d) the induced line voltage, e) the capacitor current;

The generated power at the main winding of DSWIG is consumed by electronic load. This electronic load has voltage, current and power limitation, and is operating in constant voltage mode. The test setup is presented in Fig. 16.
5. Conclusion

The DSWG scheme proposed in this paper uses an inverter with apparent power less than the corresponding generator power.

The expected ratio between the inverter power and the generator power is 50% in DSWG case.

This is similar to DFIG applications.

The advantage of DSWG is given by the lack of brushes.

DSWG can be used in variable speed applications. It is possible to extract a low power even at low speeds, which cannot be obtained in the case when the generator is directly connected to the grid, or when the generator has an inverter on the excitation winding and a diode bridge on the main winding.

The DSWG studied typology is an advantageous solution when it supplies unpretentious loads.

The inverter on the main winding is used to transfer active power and also reactive power required for generator magnetization at low speeds, when the capacitor could not provide enough reactive power.

A method to determine the saturated inductance of the DSWG was also developed.

Digital simulations and experimental results, in good correspondence, prove the validity of the theoretical considerations.

Acknowledgment

This paper was supported by the project “Microgrid integrated small power renewable energy hybrid systems” PCCA 36/2012, PN-II-PCCA-2011-3.2-1519, Funding Application for Joint Applied Research Projects.

References

