MODIFIED PSO BASED STABLE POWER FLOW WITH RAMPING RENTS

M. Anitha S. Subramanian
Department of Electrical Engg., Annamalai University, Annamalainagar 608 002, Tamil Nadu, INDIA
vishanitha@yahoo.com, dr_smani@yahoo.co.in

Abstract: This paper describes an application of Fitness Distance Ratio Particle Swarm Optimization (FDR PSO) algorithm to determine the optimal power dispatch of the Independent Power Producers (IPP) in deregulated environment. The loads and wheeling transactions are varying rapidly in the deregulated power market. Hence the power producers must respond quickly to those changes. In this paper, optimal production costs are computed with ramping cost for the power producers. The effectiveness of the proposed algorithm has been demonstrated on practical IEEE 30 bus system for increased load conditions and Indian utility 62 bus system.

Key words: Optimal power dispatch, production cost, ramping cost, fitness distance ratio particle swarm optimization, transient stability limit.

I. INTRODUCTION

The restructuring of the electric power industry has involved paradigm shifts in real-time control activities of the power grids. Managing dispatch is one of the important control activities in a power system. Optimal Power Flow (OPF) has perhaps the most significant technique for obtaining minimum cost generation patterns in a power system with the existing transmission and operational constraints. Practically, the objective function of the OPF problem is non-convex in nature. Hence artificial intelligence methods have been recently proposed to solve the OPF problem. Abido solved the OPF problem using PSO technique. The global and local exploration capabilities of PSO are used to search for optimal settings of the control variables. The author demonstrated the PSO algorithm with different power system objectives on IEEE 30 bus system. [1]. Paranjothi et al. solved the OPF problem using Refined Genetic Algorithm (RGA) and demonstrated on IEEE 6 bus and 30 bus systems [2]. Yuchao Ma et al. have employed PSO algorithm to find the optimal supply function of the electricity producer with the objective of maximizing producer surplus in the market clearing. The authors have demonstrated the PSO algorithm with different simulation cases on IEEE 30 bus system [3]. All the above methods consider the OPF problem as convex in nature and assume that the IPP is operating between the minimum and maximum generation limits.

Though the solution of the OPF problem minimizes the fuel cost by satisfying the practical constraints like line flow, voltage limits etc., it has to be within the stability limits. The emergence of competitive power market makes the transient stability constrained OPF increasingly important because of the participation of many independent power producers. Hence the transient stability constraint is also incorporated in the OPF problem formulation.

Though the solution of the OPF problem minimizes the fuel cost by satisfying the practical constraints like line flow, voltage limits etc., it has to be within the stability limits. The emergence of competitive power market makes the transient stability constrained OPF increasingly important because of the participation of many independent power producers. Hence the transient stability constraint is also incorporated in the OPF problem formulation.

Zhang et al. have proposed an algorithm, which based on control variable parameterisation to solve the dynamic OPF problem on the 9 bus, 3 generator system [4]. David et al. have developed a transient security enhancement approach for deregulated power system by the corrected hybrid method [5].

In the deregulated power market, the loads and wheeling transactions are changing dynamically with respect to time. Hence IPPs have to respond to those changes and their new operating states have to be obtained. But the operating (elastic) range of the IPPs are restricted by their ramp rate limits [6]. When the operating range of the IPP is within the elastic range, the corresponding ramping process will not shorten life of the rotor and no ramping costs are incurred. When the operating range of the IPP violates the elastic range, the economic impact due to the rotor fatigue is expressed in terms of the ramping cost [7,8]. Shresha et al. derived the operating cost of the IPPs by considering ramping rate and time with conventional quadratic cost function [9] and demonstrated the same for a unit system. Tanaka described an extended form of real time pricing that achieves the optimal rate of change in quantity demanded by considering the ramping costs into account. The steepness of the load curve is controlled by the proposed optimal pricing policy, which reduced the ramping cost and the possibility of
large scale black out [10]. Wei Fan et al. solved the unit commitment problem with ramping constraints within lagrangian relaxation framework. The authors used a modified constructive dynamic programming method to determine the optimal generation levels of a commitment state without discretizing generation levels [11]. Morgan proposed Genetic Algorithm (GA) to solve Dynamic Economic Dispatch (DED) problem considering dynamic ramping rate constraints. The suitability and capability of GAs in dealing with the ramping rate constraints on the DED problem is demonstrated on 25 unit Northern Ireland Electricity system [12].

In this paper, the optimal production cost of the IPP is computed with ramping cost for IEEE 30 bus and Indian Utility 62 bus systems. The FDR PSO based algorithm is used to obtain the operating state of the IPPs with respect to change in load conditions. The ramping cost is calculated by taking into account of ramping rate and time with fuel cost function. Transient stability limits of the generators are also considered in the OPF problem formulation. Optimal production costs are obtained when contingency analysis is carried out on the 62 bus test system.

II. PROBLEM FORMULATION

Optimization of operating cost function F of generation has been formulated based on classical OPF problem with line flow constraints. For a given power system network, the optimization of operating cost of generation is given by the following equation.

\[
F = \min \sum_{i=1}^{n} (f_i(P_i) + RC_i) \quad \text{$/hr$} \quad \ldots (1)
\]

where F is the total operating cost of power producers, \(f_i(P_i)\) is the fuel cost of the \(i^{th}\) power producer. \(RC_i\) is the ramping cost of the power producer and \(n\) is the total number of power producers connected in the network.

The fuel cost function of the \(i^{th}\) generator is given by

\[
f_i(P_i) = a_0 + a_1 P_i + a_2 P_i^2 \quad \text{$/hr$} \quad \ldots (2)
\]

where \(P_i\) is the real power output of an \(i^{th}\) power producer and \(a_0, a_1, a_2\) are the fuel cost coefficients of the \(i^{th}\) power producer.

Fig. 1 shows the variation of output during the ramping process. It consists of the ramping period \([0, RT]\) and a constant output period \([RT, 1]\). The power output of the power producer is given by

\[
P_i = P_i + RR* t \quad \text{when } t \in [0, RT] \quad \ldots (3a)
\]

\[
P_i = P_i + RR * RT \quad \text{when } t \in [RT, 1] \quad \ldots (3b)
\]

where \(RR\) is the ramping (up/down) rate and \(RT\) is the ramping time of the \(i^{th}\) power producer.

The operating cost function of the power producer given in the Equation 1 is subjected to the following constraints.

\[
\sum_{i=1}^{n} P_i = P_D + P_L \quad \ldots (4)
\]

where \(P_D\) is the total load of the system and \(P_L\) is the transmission losses of the systems.

* Ramp rate constraint

The ramp rate constraint restricts the operating range of the physical lower and upper limit to the effective lower limit \(P_L\) and upper limit \(P_{\text{max}}\) respectively. These limits are defined as

\[
P_L = \max [P_{\text{min}}, P_i^{0} - DR_i] \quad \ldots (5a)
\]

\[
P_{\text{max}} = \min [P_{\text{max}}^i, P_i^{0} + UR_i] \quad \ldots (5b)
\]

where \(P_i^{0}\) is the power generation of unit \(i\) at previous hour and \(DR_i\) and \(UR_i\) are ramp rate limits of unit \(i\) as generation decreases and increases respectively. \(P_i\) and \(P_{\text{max}}\) are the physical lower and upper limits of the power producer and the area between these limits is known as elastic range, which is shown in Fig. 2.
* The inequality constraint on real power generation P_i of each power producer is given by

$$ P_{iL} \leq P_i \leq P_{iU} $$

(6)

Due to the change in load and credible contingencies, the power producers are adjusted to new setting values. If the power delivery of the power producer lies within the elastic range, no ramping cost is incurred, otherwise it is incurred.

* Power limit on transmission line is given by

$$ \text{MVA}_{f_{p,q}} \leq \text{MVA}_{f_{p,q}}^{\text{max}} $$

(7)

where $\text{MVA}_{f_{p,q}}^{\text{max}}$ is the maximum rating of transmission line connecting buses p and q.

* Transient stability constraint is expressed in terms of generator rotor angles which is given as follows:

$$ \delta_{\text{min}} \leq \delta_i \leq \delta_{\text{max}} $$

(8)

where δ_i is the relative rotor angle of the i^{th} power producer with respect to the reference.

When the ramping process is included in the power dispatch, the effective operating cost of a unit considering the change of the power output [9] is given by

$$ F = f_1 + f_2 (1 - \frac{1}{2} * \text{RT}) * \text{RT} * \text{RR} + a_1 (1 - 2/3 * \text{RT}) * \text{RT}^2 * \text{RR}^2 $$

(9)

where $f_1 = a_0 + a_1 P_i + a_2 P_i^2$ and $f_2 = a_1 + 2a_2 P_i$

III. OVERVIEW OF PARTICLE SWARM OPTIMIZATION

In 1995, Kennedy and Eberhart first introduced the PSO method which is motivated by social behavior of organisms such as fish schooling and birds flocking [13]. In a PSO system, particles fly around a ‘d’ dimensional problem space. During flight, each particle adjusts its position according to its own experience as well as by the best experiences of other neighboring particles. Let us consider $X_i = (x_{i1}, x_{i2}, \ldots, x_{id})$ and $V_i = (v_{i1}, v_{i2}, \ldots, v_{id})$ be the position and velocity of the i^{th} particle. Velocity V_i is bounded between its lower and upper limits. The best previous position of the i^{th} particle is recorded and is given by $P_{\text{best}_i} = (p_{i1}, p_{i2}, \ldots, p_{id})$. Let $g_{\text{best}} = (P_{\text{best}_1}, P_{\text{best}_2}, \ldots, P_{\text{best}_d})$ be the best position among all individual best positions achieved so far. Each particle’s velocity and position is updated using the following two equations:

$$ V_{id}^{k+1} = W * V_{id}^k + C_1 * \text{rand1} * (P_{id} - X_{id}) + C_2 * \text{rand2} * (P_{\text{global}} - X_{id}) $$

(10)

$$ X_{id}^{k+1} = X_{id}^k + V_{id}^{k+1} $$

(11)

where C_1 and C_2 are the acceleration constants, which are the ratio of the fitness difference to the one-dimensional distance. In other words, the d^{th} dimension of the i^{th} particle’s velocity is updated using a particle called the n_{best}, with prior best position P_i.

It is necessary to maximize the following Fitness Distance Ratio which is given by

$$ \text{FDR} = \frac{|V_{id}^{k+1}|}{|V_{id}^{k}|} $$

IV. FDR PSO based Power Flow

In the literature, it has been proven that the particle positions in PSO oscillate in damped sinusoidal waves until they converge to points in between their previous P_{best} and g_{best} positions [14,15]. During this oscillation, if a particle reaches a point, which has better fitness than its previous best position, then the particle continues to move towards the convergence of the global best position discovered so far. All the particles follow the same behavior to converge quickly to a good local optimum. Suppose, if the global optimum of the problem does not lie on a path between original particle positions and such a local optimum, then the particle is prevented from effective search for the global value. In such cases, many of the particles are wasting their computational effort in seeking to move towards the local optimum already discovered. Better results may be obtained if various particles explore other possible search directions.

In the FDR PSO algorithm, in addition to the Socio-cognitive learning processes, each particle also learns from the experience of neighboring particles that have a better fitness than itself [16]. This approach results in change in the velocity update equation, although the position update equation remains unchanged. It selects only one other particle at a time when updating each velocity dimension and that particle is chosen to satisfy the following two criteria.

1. It must be near the current particle.
2. It should have visited a position of higher fitness.

The simplest way to select a nearby particle which satisfies the above mentioned two criteria is that maximizes the ratio of the fitness difference to the one-dimensional distance. In other words, the d^{th} dimension of the i^{th} particle’s velocity is updated using a particle called the n_{best}, with prior best position P_i. It is necessary to maximize the following Fitness Distance Ratio which is given by
In the FDR PSO algorithm, the particle’s velocity update is influenced by the following three factors:

1. Previous best experience i.e. P_{best} of the particle.
2. Best global experience i.e. g_{best}, considering the best P_{best} of all particles.
3. Previous best experience of the “best nearest” neighbor i.e. n_{best}.

Hence, the new velocity update equation becomes:

$$V_{id}^{k+1}=W*V_{id}^{k} + C_1*r_{and1}*(P_{id} - X_{id}) + C_2*r_{and2}*(P_{gd} - X_{gd}) + C_3*r_{and3}*(P_{nd} - X_{nd}) \ldots (13)$$

where P_{nd} is the nearby particle that have better fitness.

The position update equation remains the same as in Equation (11). The step by step algorithm is given in Fig.3.

![Step-by-Step Algorithm Diagram](image)

Fig. 3. Step-by-Step Algorithm

V. SIMULATION RESULTS AND DISCUSSION

In the proposed approach, the optimal power dispatch and minimum production cost of the IPPs were obtained using swarm intelligence algorithms by satisfying the transmission line constraints. When the ramping process was included in the power dispatch, the effective ramping cost of the power producer was computed due to the change in their power output corresponding to load changes. The step-by-step algorithm for computing the production cost is given in Fig.3.

The swarm intelligence algorithms were tested on IEEE 30 bus and an Indian utility 62 bus test systems. In the swarm intelligence methods, the population size, the number of generations and the acceleration constants decide the execution time of the algorithm and their details are given in Appendix A. A linearly decreasing inertia weight W, which varies from 0.9 to 0.2, was used for the convergence characteristics. The line flows were computed using Newton Raphson method and their derated limits were incorporated.

The transient stability limits of the generators were incorporated in the OPF problem formulation and security of the system is ensured. The simulation studies were carried out on P IV, 3 GHz system in MATLAB environment. The following case studies were carried to obtain the transient stability based OPF solution.

Case 1: IEEE 30 bus system

The test system consists of 6 power producers, 41 transmission lines, 4 tap changing transformers and 2 injected VAR sources. The base load of the test system is 283.4 MW. In this paper, ramp rate limits are also included in the generator real power limits to meet the change in load demand. The fuel cost coefficients, the operating state of the generators and their corresponding ramp rate limits are given in Appendix B. The optimal production cost obtained through the PSO and FDR PSO methods for the base load condition is given by 829.33 $/hr and 813.49 $/hr respectively. The optimal power dispatch and minimum production costs were obtained using the swarm intelligence algorithms for increased load conditions and the results are given in Table 1.

From this table, it is observed that the proposed FDR PSO algorithm gives better results than PSO algorithm. The voltage magnitude plot corresponding to 130% of load condition is shown in Fig. 4. From this figure, it is inferred that the OPF solution obtained by the algorithm satisfies the voltage limits even at the large load change condition.

![Table 1: Optimum results obtained in different cases](image)

```
<table>
<thead>
<tr>
<th>% of load</th>
<th>PSO</th>
<th>FDR PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FC</td>
<td>RC</td>
</tr>
<tr>
<td>110</td>
<td>96.9</td>
<td>24.67</td>
</tr>
<tr>
<td>120</td>
<td>98.41</td>
<td>24.67</td>
</tr>
<tr>
<td>130</td>
<td>1103.37</td>
<td>24.79</td>
</tr>
</tbody>
</table>

FC–Fuel Cost($/hr)  RC–Ramping Cost($/hr)  PC–Production Cost ($/hr)  $P_L$–Loss (MW)```


In the above OPF solution, the transient stability limit has been incorporated by the following procedure: A three phase to ground fault was assumed in the transmission line connected between buses 1 and 2. The above fault was cleared by opening the contacts of the circuit breakers by 100 ms. The obtained OPF solution satisfies transient stability limit and the corresponding relative rotor angles of the generators are shown in Fig. 5.

Hence the obtained OPF solution satisfies the voltage, line flow, ramp rate and transient stability limits of the generators.

**Case 2: Indian Utility 62 bus system**

To validate the proposed algorithm, a practical Indian Utility system with a major contingency analysis is described in this section. The test system consists of 62 buses, 19 power producers, 89 (220KV) lines with 11 tap changing transformers have been considered. The ramping rate coefficients of the power producers of the Indian utility system are given in Appendix C. The base load of the system is 2909 MW. The optimal production cost obtained through PSO and FDR PSO methods for the base case is 14709.35 $/hr and 14423.87 $/hr respectively. The practical test system is subjected to the dynamic load changes with respect to 24 hours and it is illustrated in Fig. 6.

For the corresponding load changes, the proposed FDR PSO algorithm was applied to obtain the optimal power dispatch and ramping cost of the generators. In this case, contingency analysis was also carried out on the test system along with the load changes. The 4th generator is made out of service to incorporate major contingency. The operating cost of the test system with dynamic load constraints in the horizon of 24 hours were evaluated and given Fig. 7. It infers that the proposed algorithm is capable to obtain the minimum solution with load changes and contingency by satisfying the power flow constraints.

**VI. CONCLUSION**

This paper has presented the FDR PSO based algorithm for the computation of production cost of the power producers. The production cost including the ramping cost was obtained from conventional fuel cost and ramping rate functions. The obtained solution satisfies voltage, line flow and transient stability limits. The optimal power dispatch and ramping rents for the practical test systems were obtained for dynamic load changes. The solutions are quite useful to carry out the accurate pricing scheme in the present deregulated environment.
VII. Appendix

A: Simulation parameters –PSO and FDR PSO methods

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>Population size</th>
<th>Maximum No. of generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO</td>
<td>1.0</td>
<td>1.0</td>
<td>---</td>
<td>20</td>
<td>750</td>
</tr>
<tr>
<td>FDR PSO</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>20</td>
<td>750</td>
</tr>
</tbody>
</table>

B: Fuel cost coefficients and ramp rate limits

<table>
<thead>
<tr>
<th>Gen No.</th>
<th>( a_1 )</th>
<th>( a_2 )</th>
<th>( a_3 )</th>
<th>( P_{min} ) (MW)</th>
<th>( P_{max} ) (MW)</th>
<th>Operating Power (MW)</th>
<th>RR (MW/hr)</th>
<th>DR (MR)</th>
<th>RT (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>0.00375</td>
<td>5.0</td>
<td>50</td>
<td>200</td>
<td>130</td>
<td>42</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>1.75</td>
<td>0.01050</td>
<td>5.0</td>
<td>50</td>
<td>200</td>
<td>130</td>
<td>42</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>0.06250</td>
<td>5.0</td>
<td>50</td>
<td>200</td>
<td>130</td>
<td>42</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>3.25</td>
<td>0.00834</td>
<td>10</td>
<td>50</td>
<td>200</td>
<td>130</td>
<td>42</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>3.00</td>
<td>0.02000</td>
<td>10</td>
<td>50</td>
<td>200</td>
<td>130</td>
<td>42</td>
<td>60</td>
<td>45</td>
</tr>
</tbody>
</table>

C: Ramping rate coefficients – 62 bus system

<table>
<thead>
<tr>
<th>Gen No.</th>
<th>( b_1 )</th>
<th>( b_2 )</th>
<th>( b_3 )</th>
<th>( P_{min} ) (MW)</th>
<th>( P_{max} ) (MW)</th>
<th>Operating Power (MW)</th>
<th>RR (MW/hr)</th>
<th>DR (MR)</th>
<th>RT (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>300</td>
<td>200</td>
<td>105.4</td>
<td>135</td>
<td>57</td>
<td>18</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>56</td>
<td>400</td>
<td>132</td>
<td>182</td>
<td>54</td>
<td>18</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>12</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>100</td>
<td>120</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>25</td>
<td>50</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>50</td>
<td>200</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>200</td>
<td>130</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>100</td>
<td>300</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>100</td>
<td>400</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>75</td>
<td>50</td>
<td>150</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

VIII. ACKNOWLEDGEMENT

The authors gratefully acknowledge the Management of Annamalai University, Annamalainagar, Tamil Nadu, INDIA for their continued support, encouragement and the facilities provided to carry out this research work.

IX. REFERENCES


X. Biographies

M.Anitha received the Degree in Electrical Engineering and the Master’s Degree in Power Systems with Distinction from Madurai Kamaraj University in 1991 and 1994 respectively. She is currently working as Senior Lecturer in Electrical Department, Annamalai University, India. She is doing Ph.D. in the area of Power System deregulation. Her field of interest is Power System Economics, Power System Privatization and Optimization techniques.

Dr. S. Subramanian obtained B.E in Electrical Engineering from Madurai Kamaraj University in 1989 and M.E in Power Systems from Madurai Kamaraj University in 1990. He had his Doctoral degree from Annamalai University in 2001. He is serving as Professor in Electrical Engineering at Annamalai University, Annamalai Nagar, India. His fields of interest include Power System Economics, Electrical Machine Design and Power System State Estimation. He has published 60 research papers in various International Journals, National Journals, International Conferences and National Conferences. He has produced 2 Ph.Ds and 20 M.E. Projects.