Performance Analysis of TCSC Controller with a power system

Dr. S. Latha, Associate professor
Dept. of Electrical and Electronics
Thiagarajar college of Engineering
Madurai, India

Mr.J. Pandia Rajan, Assistant Professor
Dept. of Electrical and Electronics
Mepco Schlenk Engineering college
Sivakasi, India

Abstract — In this paper the design of robust fuzzy logic Thyristor Controlled Series compensator (TCSC) for stability of a single machine infinite bus (SMIB). The performance of the system with robust fuzzy logic based Thyristor Controlled Series compensator is compared with the system having conventional Thyristor Controlled Series compensator. The results show that the system with robust fuzzy logic controller is capable of stabilizing the system faster than the conventional controllers.

Keywords — Power system stability, robust control, fuzzy logic, SMIB power system, Thyristor Controlled Series Compensator.

I. INTRODUCTION

Modern power systems are characterized by extensive system interconnections and increasing dependence on control for optimal utilization of existing resources. The supply of reliable and economic electrical energy is a major determinant of industrial progress and consequent rise in the standard of living. The increasing demand for electric power coupled with available technique for exploiting the high thermal loading limits of EHV lines. With deregulation of power supply utilities, there is a tendency to view the power networks as highways for transmitting electric power from wherever it is available to place where required, depending on the pricing that varies with time of the day.

Stability of power systems continue to be of major concern in system operation. This arises from the facts that in steady state, the average electrical speed of all the generators must remain the same anywhere in the system. This termed as the synchronous operation of a system. Any disturbance small or large can affect the synchronous operation. For example, there can be a sudden increase in the load or loss of generation. Another type of disturbance is the switching out of a transmission line, which may occur due to overloading or a fault. Due to this the stability of the system is affected. Then the system can settle to a new original steady state after the transients disappear.

By means of flexible and rapid control over the AC transmission parameters and network topology, Flexible AC Transmission System (FACTS) technology can facilitate the power control, enhance the power control, enhance the power transfer capability, decrease the line losses and generation costs, and improve the stability and security of the power system [2]. For the analysis of small signal stability accurate representation of system dynamics along with tuned FACTS controller is essential.

Conventional TCSC is used in existing power system stabilizers is contribution in enhancing power system dynamic stability. The parameters of TCSC are determined based on linearized model of the power system around a nominal operating point where they can provide good performance. Since power systems are highly nonlinear systems, with configurations and parameters that change with time, the TCSC design based on the linearized model of the power system cannot guarantee its performance in a practical operating environment. To improve the performance of conventional TCSC, numerous techniques have been proposed for their design, such as using genetic algorithm, neural networks, fuzzy logic and many other nonlinear control techniques.

Dr. S. Latha, Associate professor, Department of Electrical and Electronics Engineering, Thiagarajar College of engineering. Email: sleee@tce.edu.
J. Pandia Rajan, Assistant professor, Department of Electrical and Electronics Engineering, Mepco Schlenk college of engineering. Sivakasi. Email: pandiarajan@mepcoeng.ac.in
II. DESIGN OF CONVENTIONAL TCSC CONTROLLER

Thyristor Controlled Series Compensation is used in power systems to dynamically control the reactance of a transmission line in order to provide sufficient load compensation. The benefits of TCSC are seen in its ability to control the amount of compensation of a transmission line, and in its ability to operate in different modes. These traits are very desirable since loads are constantly changing and cannot always be predicted [3].

The circuit diagram of a TCSC is shown in Figure 1. It consists of three components: capacitor banks, bypass inductor L and bidirectional thyristors SCR. In Figure 1, \(i_C \) and \(i_s \) are the instantaneous values of the currents in the capacitor banks and inductor, respectively; \(i_s \) the instantaneous current of the controlled transmission line; \(v \) is the instantaneous voltage across the TCSC.

The control of the TCSC is achieved by the firing angle signal \(\alpha \), which changes the fundamental frequency reactance of the compensator. There exists a steady-state relationship between the firing angle \(\alpha \) and the reactance \(X_{\text{TCSC}}(\alpha) \). This relationship can be described in the following equation:

\[
X_{\text{TCSC}}(\alpha) = \frac{X_C - \frac{X_C^2}{X_p} \frac{\sigma + \sin \sigma}{\Pi} + \frac{4X_C^2}{X_s - X_p} \cos^2(\frac{\sigma}{2})(k\tan(\frac{\sigma}{2}) - \tan(\frac{\sigma}{2}))}{(k^2 - 1)\Pi}
\]

(1)

Where,

\(X_C = \) Nominal reactance of the fixed capacitor C
\(X_p = \) Inductive reactance of inductor L connected parallel with C
\(\sigma = 2(\pi - \alpha) = \) Conduction angle of TCSC controller
\(k = \) Compensation ratio

The equation (1) is the fundamental frequency reactance offered by TCSC, \(X_{\text{TCSC}}(\alpha) \), is a unique-valued function; the TCSC is modeled here as a variable capacitive reactance within the operating region defined by the limits imposed by \(\alpha \). Thus \(X_{\text{TCSC}} \leq X_{\text{TCSC}}(\alpha) \leq X_{\text{TCSC}} \), with \(X_{\text{TCSC}}_{\text{max}} = X_{\text{TCSC}}(180^0) \) and \(X_{\text{TCSC}}_{\text{min}} = X_{\text{TCSC}}(\alpha_{\text{min}}) \). In this paper, the Controller is assumed to operate only in the capacitive region, i.e., \(\alpha_{\text{min}} > \alpha_{\text{r}} \) where \(\alpha_{\text{r}} \) corresponds to the resonant point, as the inductive region associated with \(90^0 < \alpha < \alpha_{\text{r}} \) induces high harmonics that cannot be properly modeled in stability studies [4].

A: Robust \(H_\infty \) Loop shaping TCSC controller:

The robust TCSC are designed based on \(H_\infty \) loop shaping control [8]. The design procedure is divided into 3 steps as follows.

Step 1: Loop shaping

As shown in Figure 2, a pre compensator \(W_1 \) and a post compensator \(W_2 \) are employed to form the augmented plant \(G_s = W_2G_1W_1 \), which is enclosed by a solid line.

Figure 2: Shaped plants G and designed robust controller K.

The designed robust stabilizer \(K = W_1K_\infty W_2 \) is enclosed by a dotted line where \(K_\infty \) is the \(H_\infty \) controller. The weighting function can be selected as \(W_1 = W \) and \(W_2 = 1 \).

Step 2: Formulation of \(H_\infty \) robust stabilization problem

A shaped plant \(G_s \) is expressed in form of normalized left co-prime factor \(G_s = M \cdot N_s \), when the perturbed plant \(G_s \) is defined as,

\[
G_s = ((M_s + \Delta M_s)(N_s + \Delta N_s)): \|\Delta N_s \|\Delta M_s\|_2 \leq \frac{1}{\gamma}
\]

(2)

Where, \(\Delta M_s \) and \(\Delta N_s \) are stable unknown transfer functions which represent uncertainties in the nominal plant model G. Based on this definition, the \(H_\infty \) robust stabilization problem can be established by \(G_s \) and \(K \) as depicted in Figure 4. The objective of robust control design is to stabilize not only the nominal plan G but also the family of perturbed plant \(G_s \). In equ (2) \(1/\gamma \) is defined as the robust stability margin.

The maximum stability margin in the face of system uncertainties is given by the lowest achievable value of \(\gamma \), i.e. \(\gamma_{\text{min}} \). Hence, \(\gamma_{\text{min}} \) implies the largest size of system uncertainties that can exist without destabilizing the closed loop system in Fig. 4. The value of \(\gamma_{\text{min}} \) can be easily calculated from
\[
\gamma_{\text{min}} = \sqrt{1 + \lambda_{\text{max}}(XZ)} \tag{3}
\]

Where \(\gamma_{\text{max}}(XZ) \) denotes the maximum Eigen value of \(XZ \). For minimal state-space realization (A, B, C, D) of \(s \mathcal{G} \), the values of \(X \) and \(Z \) are unique positive solutions to the generalized control algebraic Riccati equation

\[
(A - BS^{-1}D^T C)^T X + X(A - BS^{-1}D^T C)^T - XBS^{-1}B^T X + C^T R^{-1}C = 0 \tag{4}
\]

And the generalized filtering algebraic Riccati equation

\[
(A - BS^{-1}D^T C)Z + Z(A - BS^{-1}D^T C)^T - ZC^T R^{-1}CZ + BS^{-1}B^T = 0 \tag{5}
\]

Where \(R = I + DD^T \) and \(S = I + D^T D \). Note that no iteration on \(\gamma \) is needed to solve for \(\gamma_{\text{min}} \). To ensure the robust stability of the nominal plant, the weighting function is selected so that \(\gamma_{\text{min}} \leq 4.0 \) [8]. If \(\gamma_{\text{min}} \) is not satisfied, then adjust the weighting function.

Step 3 Determination of Robust controller:

The \(K_{\infty} \) controller in Figure 3 can be determined by,

\[
K_{\infty} = \begin{bmatrix}
A + BF + \gamma^2 (L^T)^{-1} Z C^T (C + DF) \\
B^T X
\end{bmatrix} \tag{6}
\]

Where, \(F = -S (D^T C + B^T X) \) and \(L = (1 - \gamma^2) I + X \).

Next, find robust controller \(K(s) = W_1 K_{\infty} W_2 \) that satisfies the necessary condition

\[
\left\| \begin{bmatrix} I & -G_q \end{bmatrix} \left(I - G_q K_{\infty} \right)^{-1} \left[I \ G_q \right] \right\|_{\infty} \leq \gamma \tag{7}
\]

III. DESIGN OF SMIB POWER SYSTEM

A: System Modeling:

The single-machine infinite-bus (SMIB) power system installed with a TCSC, shown in Figure 6, is considered in this study. In the Figure, \(X_T \) and \(X_L \) represent the reactance of the transformer and the transmission line respectively; \(V_T \) and \(V_B \) are the generator terminal and infinite bus voltage respectively.

In the design of electromechanical mode damping stabilizer, a linearized incremental model around an operating point is usually employed. The Figure 6 shows the Phillips-Heffron model of the power system with FACTS devices is obtained by linearizing nonlinear equations of the power system around an operating condition [11].

B: Non linear modeling:

In the non linear modeling of SMIB system we use the synchronous generator which is represented by model 1.0, i.e. with field circuit and one equivalent damper winding on q axis. The machine equations are described by,
1: Stator winding equation:

\[V_q = -r_s i_{q} - x_{d}o_{q} + E_q \] (8)

\[V_d = -r_s i_{d} + x_{q}o_{q} + E_d \] (9)

Where,

- \(r_s \) - The stator winding resistance
- \(x_{d} \) - The d-axis transient resistance
- \(x_{q} \) - The q-axis transient resistance
- \(E_q \) - The q-axis transient voltage
- \(E_d \) - The d-axis transient voltage

2: Rotor winding equation:

\[T_{d0} \frac{dE_q'}{dt} + E_q' = E_f - (x_d - x_d')i_d \] (10)

\[T_{q0} \frac{dE_d'}{dt} + E_d' = (x_q - x_q')i_d \] (11)

Where,

- \(T_{d0} \) - is the d-axis open circuit transient time constant
- \(T_{q0} \) - is the q-axis open circuit transient time constant
- \(E_f \) - is the field voltage

C: Linearized modeling:

The Linearized model of SMIB system with TCSC controller is represented by Phillips-Heffron linear model. As shown in Figure 7.

![Figure 7: Phillips-Heffron model of SMIB with TCSC](image)

The mathematical model of the Linearized SMIB system is as follows;

\[\Delta \delta = \omega \Delta \omega \] (12)

\[\Delta \omega = [-K_1 \Delta \delta - K_2 \Delta E_q' - K_4 \Delta \sigma - D \Delta \omega]/M \] (13)

IV. DESIGN OF ROBUST FUZZY LOGIC TCSC CONTROLLE

The Robust fuzzy logic controller design consists of the following steps:

- Identification of input and output variables
- Construction of control rules
- Establishing fuzzification method and fuzzy membership functions
- Selection of the compositional rule of inference
- Defuzzification method, so transformation of the fuzzy control statement into specific actions.

The variables for FLTcsc are speed deviation, acceleration and voltage. The speed deviation and acceleration are inputs variables and voltage is the output variables. In practice, only shaft speed is readily available.

The acceleration signal can be derived from speed signals measured at two successive sampling using

\[\Delta \omega(k) = \frac{\Delta \omega(k) - \Delta \omega(k - 1)}{\Delta T} \] (16)

Each of the input and output variables are seven linguistic fuzzy: NB (Negative Big), NM (Negative Medium), NS (Negative Small), ZE (Zero), PS (Positive Small), PM (Positive Medium), PB (Positive Big). The triangular membership functions are used to define the degree of membership. The variables are normalized by multiplying with gains so that their value lies between -1 and 1. The membership function for inputs and outputs are shown in figure 8.

![Figure 8: Input1 membership function](image)
The two inputs are speed and acceleration, which results in 49 rules for each machine. Example, IF $e(t)$ is PB and derivative of $e(t)$ is zero, THEN the K_P is PB.

All the 49 rules are explained in table 1. The stabilizers output is obtained by applying a particular rule expressed in the form of membership functions. Finally the output membership function of the rule is calculated. The surface of control is shown in figure 9.

TABLE I

<table>
<thead>
<tr>
<th>INPUT1</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NM</td>
<td>NS</td>
</tr>
<tr>
<td>NM</td>
<td>NB</td>
<td>NM</td>
<td>NM</td>
<td>NS</td>
<td>NS</td>
<td>ZE</td>
<td>EB</td>
</tr>
<tr>
<td>NS</td>
<td>NM</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>ZE</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>ZE</td>
<td>NM</td>
<td>NS</td>
<td>NS</td>
<td>ZE</td>
<td>ZE</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>PS</td>
<td>NM</td>
<td>ZE</td>
<td>ZE</td>
<td>PS</td>
<td>PS</td>
<td>PM</td>
<td>PM</td>
</tr>
<tr>
<td>PM</td>
<td>NS</td>
<td>PS</td>
<td>PS</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
</tr>
<tr>
<td>PB</td>
<td>ZE</td>
<td>PS</td>
<td>PS</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PB</td>
</tr>
</tbody>
</table>

V. SIMULATION RESULTS

The Simulink model for simulations of SMIB with fuzzy robust TCSC controller is shown in figure 10. The characteristics showing the variation in speed deviation, accelerating power and terminal voltage are presented in figure 11. It observes that the oscillations are more pronounced when a system is perturbed with constant field voltage after which it becomes stable. The excitation system parameters are $K_t=200$ and $T_o=0.02$. The time response of the angular speed, angular position for a 5% step change in mechanical input is presented in figure 12.
VI. CONCLUSION

In this work three structure of TCSC controller namely, conventional Lead Lag controller, robust H_∞ loop shaping TCSC controller, robust fuzzy logic controller is designed and modelled in Single Machine Infinite Bus (SMIB) power system in same operating condition. Modeling and simulation are obtained using simulation in Matlab 7.0. With three structure of TCSC controller in SMIB system under same operating conditions. The performance of SMIB system is analysed with various SMIB parameters like terminal voltage, accelerating power, speed deviations are obtained.

From the simulation output the settling time (T_s) of various parameters is found. It is observed that the robust fuzzy logic TCSC controller makes SMIB power system damp out the oscillation faster and makes the system stable faster than the other controllers.

VII. APPENDIX

Generator: $M = 9.26 \text{ s.}, D = 0, X_d = 0.973, X_q = 0.5, X'_d = 0.19$, $T_{sh} = 7.76, f = 60, V_T = 1.05, X_{TL} + X_{T} = 0.997$

Exciter: $K_A = 50, T_A = 0.05 \text{ s}, T_A = 0.05 \text{ s}$

TCSC Controller: $X_{TCSC} = 0.2169$, $k = 2, T_1 = T_3, T_2 = T_4, T_{WS} = 10 \text{ s}$

System matrix:

$A = \begin{bmatrix}
0 & 377 & 0 & 0 \\
-0.2918 & 0 & 0 & -0.1253 \\
7.21 & 0 & -33.33 & -6.185 \\
0.421 & 0 & 1.587 & -0.373
\end{bmatrix}$

Further,

$B = \begin{bmatrix}
0 & 0 \\
0.312 & 0 \\
-10.53 & 133.33 \\
0.253 & 0
\end{bmatrix}$

$[AV_m] = \begin{bmatrix}-0.031 \\ 0.1128 \\ 0.2158 \\ 0.6523\end{bmatrix}$

$[AP_m] = \begin{bmatrix}0.8965 \\ -0.2166 \\ 0.6523\end{bmatrix}$

REFERENCES

VIII. BIOGRAPHIES

Dr. (Mrs.) S. Latha, is presently working as Associate Professor in the Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai, India. She has completed Bachelor’s degree in Electrical and Electronics Engineering in 1986 and Master’s degree in Power systems engineering in 1987 from Thiagarajar College of Engineering, Madurai, India and completed Ph.D in November 2007 from Madurai Kamaraj University in the area of Flexible A.C Transmission System. She has been teaching for the past 20 years. She has secured first rank in Master’s degree. Her field of interest is application of Flexible AC Transmission System (FACTS) Controllers in Power System.

Mr. J. Pandia Rajan is presently working as Assistant professor in the Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivakasi, India. He has completed Bachelor’s degree in Electrical and Electronics Engineering in 2009 from Kamaraj College of Engineering and Technology, virudhunagar, Master of Technology in Control and instrumentation in 2011 from Thiagarajar College of Engineering, Madurai. His area of interest is Control of Power System, Flexible AC Transmission System (FACTS).