Modulated Hysteresis Current Control of a Grid Connected Photovoltaic System

Djamila Rekioua, Toufik Rekioua
Laboratoire LTII, Département de Génie Electrique
Faculté de Technologie, Université de Bejaia
Bejaia, Algeria
dja_rekioua@yahoo.fr

Abstract—In this paper a control of a photovoltaic system connected to the grid is presented. The main components of the studied system are solar arrays connected through a DC bus to a grid side inverter. Due to the instantaneous changing of solar irradiance and temperature, maximum power point tracking (MPPT) is integrated in the inverter control. The energy generated by the grid photovoltaic system is sent to the power grid. This is accomplished through an efficient DC/AC conversion where the MPPT is integrated in the inverter control which ensures the control of the active and reactive power level injected to the grid. To overcome undesirable drawbacks of hysteresis current control, and to obtain a constant switching frequency, in this paper we applied a modulated hysteresis control. The simulation results under Matlab/Simulink show the control performance of grid connected photovoltaic system.

Keywords—Photovoltaic systems, MPPT, Constant Switching frequency, Grid, Inverter control.

I. INTRODUCTION

Photovoltaic energy has increased interest in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power induced in the photovoltaic modules depends on solar irradiance and temperature of the solar cells. Therefore, to maximize the efficiency of the renewable energy system, it is necessary to track the maximum power point of the PV array. The PV array has a unique operating point that can supply maximum power to the load [1-2]. This point is called the maximum-power point (MPP). The locus of this point has a non-linear variation with solar irradiance and the cell temperature. Thus, in order to operate the PV array at its MPP, the PV system must contain a maximum-power point tracking (MPPT) controller [3-16]. In recent years, fuzzy logic controllers (FLC) are widely used for finding the MPP [17-23]. The inputs of fuzzy controller are error and its variations; the output is the duty ratio of DC / DC converter or its variation. The fuzzy controller introduced in [7] uses dPpv/dIpv and its variation Δ(dPpv/dIpv) as inputs, calculates the duty ratio of the MPPT converter in the first reference and the variation of this in the last two references. While the fuzzy controller in [1] considers the variation of duty cycle as output but replaces dPpv/dIpv by varying the power of the photovoltaic panel.

In this paper, we present control of a grid connected photovoltaic system. The MPPT control is integrated in the inverter control. The FLC technique is applied to the studied system and a comparison is made. The energy generated by the grid photovoltaic system is sent to the power grid. This is accomplished through an efficient DC/AC conversion where the MPPT is integrated in the inverter control which ensures the control of the active and reactive power level injected to the grid. Hysteresis Current control is used. This control is very simple but it has the main drawback of variable switching frequency [1]. To overcome this problem, a modulated hysteresis control is applies in this paper [20]. The principle is to superpose an adequate triangular signal having the desired switching frequency to the reference current. The new modulated reference current is then compared to the calculated current in hysteresis controller. The simulation results under Matlab/Simulink are presented.

II. PROPOSED SYSTEM CONFIGURATION

Fig 1 shows the proposed system configuration to interface the photovoltaic array with the power grid.

A. Photovoltaic generator

In literature, there are several mathematical models that describe the operation and behavior of the photovoltaic generator. In this paper, we use a model with a very simple resolution. It requires only four parameters namely I_sc, V_oc, V_mp, and I_mp [1].

Figure 1. Proposed system configuration
\[I_{pv} = I_{sc} \left\{ 1 - C_1 \left[\exp \left(\frac{V_{pv}}{C_2 V_{oc}} \right) - 1 \right] \right\} \]

With:

\[C_2 = \frac{V_{sc}}{\ln \left(\frac{I_{sc}}{I_{ref}} \right)} \]

\[C_1 = \left(1 - \frac{I_{ref}}{I_{sc}} \right) \exp\left(- \frac{V_{ref}}{C_2 V_{oc}} \right) \]

The simple relationship of power for a photovoltaic module is

\[P_{pv} = I_{pv} \left\{ 1 - C_1 \left[\exp \left(\frac{V_{pv}}{C_2 V_{oc}} \right) - 1 \right] \right\} V_{pv} \]

The bloc diagram of the PV model under matlab/Simulink is given in Fig.2.

![Bloc diagram of PV model](image)

Fig. 2. Bloc diagram of PV model

Fig. 3 shows the influence of irradiance \(G \) and temperature \(T_c \) on the electrical characteristics.

![Effects of solar irradiance and temperature changing](image)

Fig. 3. Effects of solar irradiance and temperature changing

B. MPPT control

Fuzzy logic controller is introducing to determine the operating point corresponding to maximum power for different insolation levels and temperature. In this case, inputs of the fuzzy logic controller are power variation \(\Delta P_{pv} \) and voltage variation \(\Delta V_{pv} \). The output is reference voltage variation \(\Delta V_{pv,ref} \). In order to converge towards the optimal point, rules are relatively simple to establish. These rules depend on the variations of power \(\Delta P_{pv} \) and voltage \(\Delta V_{pv} \). In accordance with Table.1, if the power \(P_{pv} \) increased, the operating point should be increased as well. However, if the power \(P_{pv} \) decreased, the voltage \(V_{pv,ref} \) should do the same.

<table>
<thead>
<tr>
<th>(\Delta P_{pv})</th>
<th>(\Delta V_{pv})</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN</td>
<td>MN</td>
</tr>
<tr>
<td>MN</td>
<td>SP</td>
</tr>
<tr>
<td>SP</td>
<td>MN</td>
</tr>
<tr>
<td>Z</td>
<td>BN</td>
</tr>
<tr>
<td>BN</td>
<td>SP</td>
</tr>
<tr>
<td>SP</td>
<td>MN</td>
</tr>
<tr>
<td>Z</td>
<td>SP</td>
</tr>
<tr>
<td>SP</td>
<td>MN</td>
</tr>
<tr>
<td>MN</td>
<td>Z</td>
</tr>
<tr>
<td>Z</td>
<td>SP</td>
</tr>
<tr>
<td>SP</td>
<td>MP</td>
</tr>
<tr>
<td>BP</td>
<td>BN</td>
</tr>
<tr>
<td>BN</td>
<td>MN</td>
</tr>
<tr>
<td>MN</td>
<td>Z</td>
</tr>
<tr>
<td>Z</td>
<td>SP</td>
</tr>
<tr>
<td>SP</td>
<td>MP</td>
</tr>
</tbody>
</table>

From these linguistic rules, the MPPT algorithm contains measurement of variation of photovoltaic power \(\Delta P_{pv} \) and variation of photovoltaic voltage \(\Delta V_{pv} \) proposes a variation of the voltage reference \(\Delta V_{pv,ref} \) according to Eq.4. [1-2].

\[
\begin{align*}
\Delta P_{pv} &= P_{pv}(k) - P_{pv}(k-1) \\
\Delta V_{pv} &= V_{pv}(k) - V_{pv}(k-1) \\
V_{pv,ref}(k) &= V_{pv}(k-1) + \Delta V_{pv,ref}(k)
\end{align*}
\]

Where: \(P_{pv}(k) \) and \(V_{pv}(k) \) are the power and voltage of the photovoltaic generator at sampled times \(k \), and \(V_{pv,ref}(k) \) the instant of reference voltage.

The power variation \(\Delta P_{pv} \) is either in the positive direction or in the negative one. The value of \(\Delta P_{pv} \) can also be small where on the contrary large. This control allows the research of the optimum point while being based on the expert observations. From these judgements, the reference photovoltaic voltage \(V_{pv,ref} \) is increased or decreased in a small or respectively large way in the direction which makes it possible to increase the power \(P_{pv} \). If a great increase in the voltage \(V_{pv} \) involves a great increase in the power \(P_{pv} \) we continue to strongly increase the reference voltage \(V_{pv} \). If a great increase in the voltage \(V_{pv} \) involves a reduction in the power \(P_{pv} \), we decrease the reference voltage \(V_{pv,ref} \) to obtain a fast increase in the power \(P_{pv} \). If a reduction in the voltage \(V_{pv} \) involves a weak increase in the power \(P_{pv} \) then we get closer to the optimal reference voltage which is the beginning of stabilization. When insolation and temperature vary, the same types of rules are applied to track the maximum power point. The structure of fuzzy logic controller is shown in Fig.5. (\(G_1 \), \(G_2 \) and \(G_3 \) are the adaptatives gain).
In Fig. 5, we present PV array characteristics from changes in temperature (T_c) at constant insolation. The open circuit voltage (V_{oc}) decreases when temperature increases, the maximum power point change according to the variation of temperature. It is clear that the operating point of this system operates closer to a maximum power point for variations in temperature. The control principle consists in adjusting the active power supplied to the grid to its reference value P_{ref} and the reactive power Q_{ref} to zero in order to fix the power factor at the unit. The active power reference is deduced by controlling the direct power with a proportional integral corrector generating the current reference I_{ref} to the capacitance (Fig. 4).

We have:

$$i_a = F_1 i_{g1} + F_2 i_{g2} + F_3 i_{g3}$$ \hspace{1cm} (4)

F_1, F_2 and F_3 are logic functions according to the switch states given by the grid link control and i_{g1}, i_{g2} and i_{g3} are the three phase currents supplied to the grid.

The inverter is modeled as:

$$\frac{v_{g1}}{v_{g2}} = \frac{v_{g3}}{V_c} = \frac{V_c}{3} \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix}$$ \hspace{1cm} (5)

V_{g1}, V_{g2} and V_{g3} are the three phase voltages of the DC/AC inverter. Then the filter, constituted of R_c and L_c links these voltages to E_1, E_2 and E_3, which are the three phase voltages of the grid, through the following relation:

$$\begin{pmatrix} v_{g1} \\ v_{g2} \\ v_{g3} \end{pmatrix} = R_c \begin{pmatrix} i_a \\ i_b \\ i_c \end{pmatrix} + L_c \frac{d}{dt} \begin{pmatrix} i_a \\ i_b \\ i_c \end{pmatrix} + E_1$$

Hence, we can express P_{ref} as:

$$P_{ref} = P_{pv} - P_c$$ \hspace{1cm} (7)

Active and reactive power references P_{ref} and Q_{ref} are given by the following equations:

$$P_{ref} = E_d \cdot I_{gref} + E_q \cdot I_{qref}$$
$$Q_{ref} = E_q \cdot I_{gref} - E_d \cdot I_{qref}$$

Where: E_{d}, E_{q} are the Park components of E_1, E_2, E_3, the voltages in (d,q) reference frame.

We obtain the references current:

$$I_{gref} = \frac{P_{ref} \cdot E_d + Q_{ref} \cdot E_q}{E_d^2 + E_q^2}$$
$$I_{qref} = \frac{P_{ref} \cdot E_q + Q_{ref} \cdot E_d}{E_d^2 + E_q^2}$$

Figure 4. Structure of MPPT fuzzy controller.

Figure 5. Electrical characteristics with fuzzy logic controller.

C. Power control

The control principle consists in adjusting the active power supplied to the grid to its reference value P_{ref} and the reactive power Q_{ref} to zero in order to fix the power factor at the unit.
The MPPT algorithm optimizes the reference voltage (V_{pvref}) for maximum power tracking. This voltage represents the input reference of the PI controller, which performs the DC bus voltage. The reference power (P_{ref}) represents the amount of active power produced by the photovoltaic generator interfaced to the main utility through the inverter, and P_c the power of capacitor C_{pv}; while Q_{ref} represents amount of reactive power desired to be injected into or absorbed from the main utility. In the present case, the inverter is operating at unity power factor ($Q_{ref}=0$) therefore no reactive power is exchanged and the total power extracted from the PV generator is injected to the grid.

D. Modulated hysteresis control (MHC)

The modulated hysteresis current control technique is used, it permit a constant switching frequency in the inverter. This control consists to add to the reference current i_{ref} a triangular signal i_{tr}, with frequency f_{tr} and amplitude A_{tr}. The frequency f_{tr} must be choosing equal to desired switching frequency of the semiconductor.

$$i_{mod}^* = i_{ref} + i_{tr}$$

(10)

With i_{ref} the reference current, i_{tr} is the triangular signal, i_{mod}^* is the modulated reference current.

The hysteresis controller is defined by its band width B_h which borders i_{ref}^*. In this way, the upper and the lower limit shown in Fig. 7 are obtained. The switches states are determined by the intersection points between the measured current i_m and the obtained limits. The switching strategy is a function of the reference current waveform. The desired switching period will be equal to the period of the triangular signal T_{tr}. In order to impose the switching frequency, the measured current variation during a half period $T_{tr}/2$ should not exceed the difference between the maximum of the upper limit and the minimum of the lower one [4].

In the case where the measured current will have only two intersections with the hysteresis band limits during every half period $T_{tr}/2$ of the triangular signal, these points determinate the switching times of the voltage inverter

$$2(A_{tr} - B_h) = T_{tr}$$

(11)

A_h and B_h can be calculated by the following equation [20]:

$$\frac{di}{dt} \bigg|_{max} = \frac{(A_{tr}/2)}{T_{tr}/2} = \frac{4(A_h + B_h)}{T_{tr}}$$

III. SIMULATION RESULTS

The proposed system has been modeled and simulated under Matlab/Simulink. The photovoltaic power is about...
17.85 kW (see Table 1.) and we use FLC algorithm to maximize the power. The inverter current is controlled by using MHC \((A_H=2.1, f=5 \text{ kHz} \text{ and } B_H=0.1.)\)

<table>
<thead>
<tr>
<th>TABLE II. SOLAR PANEL PARAMETERS NT175E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 strings of 17 series connected each, connected in parallel.</td>
</tr>
<tr>
<td>Maximum power (P_m)</td>
</tr>
<tr>
<td>Current at maximum power point (I_{mpp})</td>
</tr>
<tr>
<td>Voltage at maximum power point (V_{mpp})</td>
</tr>
<tr>
<td>Short-circuit current (I_{sc})</td>
</tr>
<tr>
<td>Open circuit voltage (V_{oc})</td>
</tr>
<tr>
<td>Current temperature coefficient (\alpha_{sc})</td>
</tr>
<tr>
<td>Voltage temperature coefficient (\beta_{oc})</td>
</tr>
</tbody>
</table>

We can observe that voltage and current are in phase which means that the maximum of power extracted from the PV array can pass into the grid and system operates at unity power factor \((Q_{ref}=0)\) with no reactive power exchange. Then, the system can provide energy to a utility grid with low harmonics compared to the classical control one.

IV. CONCLUSION

A control of a photovoltaic system connected to the grid has been presented. It is based on fuzzy logic theory, where the MPPT is integrated in the inverter control. We have used a fast and steady fuzzy logic MPPT controller. It adjust appropriately the optimal increment’s magnitude of voltage required for reached the optimum operating voltage and it makes it possible to find the MPP in a shorter time runs compared to conventional methods. Also to impose a constant switching frequency, we have used modulated hysteresis control (MHC) for the current control. The obtained results show that MHC controller gives less THD of grid current compared to the classical controller. The grid photovoltaic system is continuously operating at the MPP and the system can provide energy to the utility grid with low harmonics and unit power factor.

REFERENCES

