IMPROVEMENT OF POWER SYSTEM TRANSIENT STABILITY USING WIND FARMS BASED ON A DOUBLY–FED INDUCTION GENERATION (DFIG)

Sabir MESSALTI 1 Ahmed. GHERBI 2 Saad BELKHIAT 2

1 University of M’sila, Faculty of Technology, 28000, M’sila , Algeria, (messalti.sabir@yahoo.fr);
2 University of Setif, Faculty of Technology, Setif 19000, Algeria

Abstract: This paper describes a new controller of wind power for power system transient stability improvement, which the wind turbine is based on a doubly-fed induction generator (DFIG). A field-oriented control is used to control of the power flow exchanged between the DFIG and the power system. A simplified wind turbine model based on power injection is proposed in this paper. The transient stability is examined with numerical simulations based on relative rotor angles criteria. The Critical Clearing Time is used as an index for evaluated transient stability. The proposed controller is tested in the WSCC3 nine-bus system connected to a wind farms in the case of three-phase short circuit fault on one transmission line for different energy margins injected in power system.

Key words: Aggregated wind farm model, Critical clearing time CCT, DFIG, Field-oriented control, transient stability.

1. Introduction

Nowadays, energy crisis and growing environmental consciousness, simultaneously with the industrial growth, have led to an increase in electrical energy consumption. In turn, this has led to a growth in generation and transmission systems to face the increasing demand. Power system has become inherently large and complex. As a consequence, power systems are heavily loaded and also presents new challenges to power system transient stability. Power system stability is the ability to regain an equilibrium state after being subjected to a physical disturbance. Transient stability analysis examines the dynamic behavior of a power system for a period of several seconds following a disturbance [1,2]. For many years, a great research interest has focused on improving the transient stability of power systems [3-8].

Confronted with a growing energy demand and depletion in the longer term of fossil fuels, different alternatives were considered and many organizations have moved their focus towards renewable energy sources such as wind, solar, hydro, tidal wave, biomass, etc. Wind power is being used as a clean and safe energy resource for electricity generation.

Many types of generators have been used to convert wind power into electricity, especially the Doubly-Fed Induction Generators (DFIG) which is becoming increasingly popular in large wind power conversion systems due to their various advantages [9,11]. A DFIG in a wind turbine has the ability to generate maximum power with varying rotational speed, to control active and reactive by integration of electronic power converters such as the back-to-back converter, low rotor power rating resulting in low cost converter components, etc. Owing to the decoupled active and reactive control possibilities [12,13], the main area of application for the DFIG is in variable-speed generating systems such as wind power and hydro power [13-14].

Actually wind energy has widely grown; the increasing size of wind farms requires power system stability analysis including dynamic models of the wind power generation. The response of wind turbines during power system disturbances is an important issue, especially since the rated power of wind-turbine installations are steadily increasing. Many papers have treated the use of wind-turbine in improving power system performance [9-11].

This paper presents a basic design of an active power modulation controller which, in the presence of major disturbances in the power system will improve the transient stability. Therefore, in order to balance demand and generation, DFIG have to adjust their power output due to a variable wind power production. Any deficit or excess of power system will be compensated by the DFIG. This paper is organized as follows: The first part studies wind park model and the dynamics of the DFIG model establishing the Field-oriented control strategy with PI current and power controllers [15-17]. The second part shows the modeling of power system with different controllers and regulators. The discussion and analysis are presented in the third part, which the equivalence modeling of a wind park involves combining all turbines with the same mechanical natural frequency into a single equivalent turbine.

2. Modeling of wind generator

2.1. Wind Turbine Model

The mathematical relation for the mechanical power extraction from the wind can be expressed as follows:

\[ P_{\text{act}} = \frac{1}{2} C_r (\lambda, \beta) \rho S v_{\text{wind}}^3 \]  \hspace{1cm} (1)

Where:
\[ P_{\text{act}} \] is the extracted power from the wind;
\[ \lambda \] is the air density \( (kg/m^3) \);
\[ S \] is the turbine swept area \( (m^2) \);
\( V_{\text{wind}} \): is the wind speed (m/s);
\( \beta \): Blade pitch angle (deg);
\( C_p \): is the performance coefficient of the turbine, \( C_p \) is often given as a function of the tip speed ratio \( \lambda \);
\( \dot{\lambda} \): is the ratio of blade tip speed to wind speed defined by
\[
\dot{\lambda} = \frac{\Omega \dot{\lambda}}{V_{\text{wind}}}
\]
\( \Omega \): the wind turbine rotational speed (rad/sec);
\( R \): the wind turbine radius.

### 2.2. Aggregated Model of Wind Park

Wind farms contain many windmills and detailed modeling can be prohibitive due to computational complexity. In order to reduce the complexity of the analysis, a group of identical generators comprising each wind farm can be replaced by an equivalent generator [18-20].

The equivalence modeling of a wind park involves combining all turbines with the same mechanical natural frequency into a single equivalent turbine. Each of these equivalenced turbines is then connected to an equivalent induction generator. The aggregated wind farm model is based on the idea of adding the power of the individual wind turbine. The total mechanical power is:

\[
P_e = \sum_{i=1}^{\text{ng}} P_i = \sum_{i=1}^{\text{ng}} \frac{1}{2} C_p(\lambda_i, \beta_i) \rho S V_{\text{wind}}^3
\]

Where \( \text{ng} \) is the number of wind turbine in the wind farm. [18-20].

### 2.3. Model of Doubly-fed-Induction Generator

The DFIG wind turbines utilize a wound rotor induction generator. The concept is based on two back-to-back voltage source converters connecting the grid and the rotor windings. The stator windings are connected directly to the grid [12-14]. A typical configuration of a DFIG–based wind turbine is shown schematically in Fig. 1. The converter system enables variable speed operation of the wind turbine by decoupling the power system electrical frequency and the rotor mechanical frequency. By a proper adjustment of the voltage applied to the rotor circuits of the doubly-fed induction generator, the speed and consequently the active power can be controlled.

The general model of the DFIG obtained using Park transformation is given by the following equations [15-17]

\[
\begin{align*}
V_{\alpha s} &= R_{s} I_{\alpha s} + \frac{d}{dt} \phi_{\alpha s} - \omega_s \phi_{\beta s} \\
V_{\beta s} &= R_{s} I_{\beta s} + \frac{d}{dt} \phi_{\beta s} + \omega_s \phi_{\alpha s} \\
V_{\alpha r} &= R_{r} I_{\alpha r} + \frac{d}{dt} \phi_{\alpha r} - \omega_r \phi_{\beta r} \\
V_{\beta r} &= R_{r} I_{\beta r} + \frac{d}{dt} \phi_{\beta r} + \omega_r \phi_{\alpha r}
\end{align*}
\]

(4)

\[
\begin{align*}
\phi_{\alpha s} &= L_s I_{\alpha s} + M J_{\alpha r} \\
\phi_{\beta s} &= L_s I_{\beta s} + M J_{\beta r} \\
\phi_{\alpha r} &= L_r I_{\alpha r} + M J_{\alpha s} \\
\phi_{\beta r} &= L_r I_{\beta r} + M J_{\beta s}
\end{align*}
\]

(5)

\[
\begin{align*}
\phi_{\alpha r} &= L_s I_{\alpha r} + M J_{\alpha s} \\
\phi_{\beta r} &= L_s I_{\beta r} + M J_{\beta s}
\end{align*}
\]

The electromagnetic torque and its associated motion equation are expressed respectively by:

\[
C_{\text{con}} = \rho M \left[ \phi_{\alpha r} I_{\alpha s} - \phi_{\alpha s} I_{\alpha r} \right]
\]

(6)

\[
J \frac{d\Omega}{dt} = C_{\text{con}} - C_r - f\Omega
\]

(7)

### 2.4. Stator Flux Oriented Control of DFIG

To achieve a stator active and reactive power vector independent control, by orienting the reference (d,q) so that the axis is aligned with the stator flux [15-16], the following solutions can be obtained:

\[
\begin{align*}
\phi_{\alpha s} &= \phi_{\alpha r} \quad \text{and} \quad \phi_{\beta s} = 0 \\
0 &= L_s I_{\alpha s} + M J_{\alpha r} \\
0 &= L_s I_{\beta s} + M J_{\beta r} \\
C_{\text{con}} &= -\rho M \phi_{\alpha r} I_{\alpha r}
\end{align*}
\]

(8)

\[
\begin{align*}
V_{\alpha s} &= R_{s} I_{\alpha s} + \frac{d}{dt} \phi_{\alpha s} \\
V_{\beta s} &= R_{s} I_{\beta s} + \frac{d}{dt} \phi_{\beta s} + \omega_s \phi_{\alpha s} \\
V_{\alpha r} &= R_{r} I_{\alpha r} + \frac{d}{dt} \phi_{\alpha r} - \omega_r \phi_{\beta r} \\
V_{\beta r} &= R_{r} I_{\beta r} + \frac{d}{dt} \phi_{\beta r} + \omega_r \phi_{\alpha r}
\end{align*}
\]

(9)

\[
\begin{align*}
V_{\alpha r} &= R_s I_{\alpha r} + \frac{d}{dt} \phi_{\alpha r} - \omega_r \phi_{\beta r} \\
V_{\beta r} &= R_s I_{\beta r} + \frac{d}{dt} \phi_{\beta r} + \omega_r \phi_{\alpha r}
\end{align*}
\]

(10)

By neglecting the stator windings resistance (for high power generators) the stator voltages equations become

\[
\begin{align*}
V_{\alpha s} &= 0 \\
V_{\beta s} &= V_{\alpha r} = \omega_s \phi_{\alpha s}
\end{align*}
\]

(11)

(12)

The relation between the stator and rotor currents is set from the equation:

\[
\begin{align*}
I_{\alpha s} &= -\frac{M}{L_s} I_{\alpha r} + \frac{\phi_{\alpha r}}{L_s} \\
I_{\beta s} &= -\frac{M}{L_s} I_{\beta r} + \frac{\phi_{\beta r}}{L_s}
\end{align*}
\]

(13)

The stator active and reactive power, can be written as:
\[
\begin{align*}
P_s &= V_s I_{qs} = -\frac{\omega_0 M}{L_s} I_{qs} \\
Q_s &= V_s I_{ds} = -\frac{\omega_0 M}{L_s} I_{ds} + \frac{\omega_0 M^2}{L_s} 
\end{align*}
\] (14)

Substituting currents in equation (5) currents by their values in equations (13) we obtain:
\[
\begin{align*}
\phi_{ds} &= \left( L_s - \frac{M^2}{L_s} \right) I_{ds} + V_s^2 \omega_s \\
\phi_{qr} &= \left( L_s - \frac{M^2}{L_s} \right) I_{qr}
\end{align*}
\] (15)

Replacing the flux in the relation (2) we obtain:
\[
\begin{align*}
V_o &= R I_o + \left( L_s - \frac{M^2}{L_s} \right) \frac{dI_o}{dt} - g_0 \left( L_s - \frac{M^2}{L_s} \right) I_o \\
V_e &= R I_e + \left( L_s - \frac{M^2}{L_s} \right) \frac{dI_e}{dt} + g_0 \left( L_s - \frac{M^2}{L_s} \right) I_e + g_0 M \omega_s
\end{align*}
\] (16)

Where \( g \) is the slip of the induction machine and \( \omega_m = \omega_0 \).

In steady state operation the voltage expressions are:
\[
\begin{align*}
V_o &= R I_o - g_0 \left( L_s - \frac{M^2}{L_s} \right) I_o \\
V_e &= R I_e + g_0 \left( L_s - \frac{M^2}{L_s} \right) I_e + g_0 M \omega_s
\end{align*}
\] (17)

The independent control of active and reactive powers is shown in Figure.2. The both axes are controlled separately [15-17]. This result is very interesting for wind energy applications to power system transient stability improvement. This technique will be exploited and developed in the following sections.

3. Modeling of Power system

3.1. Modeling of Wind Power Controller

Power production and consumption have to be in balance within a power system. Any variation in power supply or demand can lead to a temporary imbalance in the system and affect operating conditions of power plants as well as affecting consumers. In order to avoid long-term unbalanced conditions the power demand is predicted and power plants adjust their power production.

The requirements regarding active power control of wind farms aim to ensure a stable frequency in the system.

The rapid controllability of the DFIG can be used to significantly enhance the power system stability. The equivalence modeling of a wind park involves combining all turbines with the same mechanical natural frequency into a single equivalent turbine [18-19].

The wind power controller that has been used for this purpose is given in figure.3, where \( k_{\text{wind}} \) and \( T_{\text{wind}} \) are the gain and time constant of the wind power controller respectively, in which the output power controller \( P_{\text{wind}} \) will be used as specific or reference power to be produced by the DFIG.

![Fig. 3. Model of the wind power controller.](image)

Where: \( f_{\text{ref}}, f_{\text{max}} \) are the reference and the measured frequency respectively.

The proposed power modulation \( P_{\text{wind}} \) has been incorporated in the power system in which any deficit or excess of power system is compensated by the DFIG.

The generator system behaviour (linearised model) is governed by the swing Eq.(18):
\[
\frac{d\omega_0}{dt} = \frac{d^2\delta}{dt^2} = \frac{\pi f}{H} \left( P_m - (P_e - P_{\text{wind}}) \right)
\] (18)

The electric power in power system can be written by:
\[
P_e = (P_e - P_{\text{wind}})
\] (19)

It is clear that rapid modulation \( P_{\text{wind}} \) can significantly improve the transient behavior of the synchronous and damping of oscillations of power system. It is considered that the wind power margins are considered are given by:
\[
\Delta P_{\text{min}}, \Delta P_{\text{max}}, \Delta Q = 0
\]
3.2. Modeling of Generator
This approach is based on control the frequency of power system by acting on the power delivered by the winds farms. A synchronous machine together with wind turbine can be modeled using the following non-linear dynamic equations [1, 2, 4]:

\[
\frac{d\delta}{dt} = \omega - 2\pi f \tag{20}
\]

\[
\frac{d\omega}{dt} = \frac{\pi f}{H} (P_m - (P_e - P_{w,wind})) \tag{21}
\]

\[
\frac{dE_v}{dt} = \frac{1}{T_{eo}} [E_{e,v} - E_v + (X_q - X_g)I_q] \tag{22}
\]

\[
\frac{dE_{q,v}}{dt} = \frac{1}{T_{eo}} [-E_{q,v} - (X_q - X_g)I_q] \tag{23}
\]

The system algebraic equations are given as follows:

\[
i_x = G_x E_v + B_x E_{q,v} + \sum_{ij} E_{i,x} F_{i,x} (\delta_i) + E_{q,x} F_{i,q} (\delta_i) \tag{24}
\]

\[
i_q = G_q E_v - B_q E_{q,v} + \sum_{ij} E_{i,q} F_{i,x} (\delta_i) + E_{q,x} F_{i,q} (\delta_i) \tag{25}
\]

Where:

\[
F_{i,x} (\delta_i) = G_i \cos(\delta_i - \delta_j) + B_i \sin(\delta_i - \delta_j) \tag{26}
\]

\[
F_{i,q} (\delta_i) = B_i \cos(\delta_i - \delta_j) - G_i \sin(\delta_i - \delta_j) \tag{27}
\]

\[
E_{i,v} = E_{i,v}' - X_{f,i} I_{i,v} \tag{28}
\]

\[
E_{i,q} = E_{i,q}' - X_{f,i} I_{i,q} \tag{29}
\]

\[
V_i = \sqrt{(V_{i,v})^2 + (V_{i,q})^2} \tag{30}
\]

\[
P_{i,v} = E_{i,v}' I_{i,v} + E_{i,q}' I_{i,q} \tag{31}
\]

3.3. Modeling of Voltage Regulator

Fig. 4 shows the model of Automatic Voltage Regulator used for simulation of the power system:

\[
\frac{dE_v}{dt} = \frac{1}{T_{eo}} \left[ V_R - (S_E + K_E) E_v \right] \tag{34}
\]

\[
\frac{dV_v}{dt} = \frac{1}{T_e} \left[ K_e V_v + \frac{V_{ref} - V_v}{K_a} - V_v \right] \tag{35}
\]

3.4. Modeling of Speed Regulator

The speed governor for hydroelectric generators used in this work is illustrated in the block diagram of the figure 5:

4. Algorithm of Transient Stability Analysis

The steps of the algorithm used for transient stability analysis of power system are the following [4]:

- Modeling of the network (power system, regulators, loads, wind turbine, FACTS... etc);
- Initialization of AC data;
- The computation of load flow using gauss-seidel;
- Compute the prefault system admittance matrix \( Y_{prefault} \) and reduced admittance matrix \( (N_C \times N_G) \) where \( N_G \) is the number of generator;
- The computation of initial conditions for differential equations describing the dynamic of power system;
- At \( t = 0 \), the three phase fault is occurred at bus and persists until the fault is cleared at \( t=T_d \); (the system is considered stable before the fault);
- Compute the faulted system admittance matrix \( Y_{postfault} \) and reduced admittance;
- Solve all differential equations taking into account the admittance matrix for each step using the Runge-kutta method with the inclusion of the effect of wind turbine connected to the power system (before, during and after fault):
  - At \( t=T_d \), isolate the line on which the fault occurred;
  - Compute the post fault system admittance matrix \( Y_{postfault} \) and reduced admittance matrix;
  - Solve all differential equations taking into account the admittance matrix for each period using the Runge-kutta's
method with the inclusion of the effect of wind turbine;
• Plot the relative rotor angles and all parameters;
• Assessment transient stability using relative rotor angles
criterion and assessment of CCT.

5. Results Analysis

The feasibility and efficiency of the proposed controller have been tested on a modified 9-bus 3-machine test system connected to a wind farm as shown in Fig.6. A three-phase fault is applied on one transmission line and cleared by disconnecting the affected line. Transient stability is tested for different energy margin injected in power system. Relative rotor angles criterion is used for transient stability assessment based on Runge-Kutta method. The optimal value of the CCT is determined by trial and error. For this, several values of the length of the fault duration (Td) are preselected and the Td is increased with very small steps until the system becomes unstable.

Figure.7 and Figure.8 show respectively the relative rotor angles and frequency for Td=0.210s. The relative rotor angles are oscillatory damped, frequencies of the three machines converge to the same frequency, so the system is stable.

In Figure 9, it’s clear that the relative rotor angles are not oscillatory damped, Figure.10 shows the three frequencies become asynchronous and stability is lost.
4.2. Effect of Wind turbine on power system

**Transient stability**

In order to demonstrate the interaction between the wind farms and the transient stability improvement, simulation results for three-phase short circuit on the line 7-8 near the bus 8 with different active wind margins injected in power system are presented in following figures:

![Figure 1](image_url)

**Fig. 11. Relative rotor angles with different wind power margin injected (Td=0.333s)**

Figure 11 shows the relative rotor angles for Td=0.331s in which the system was unstable. It can be observed that the system becomes again stable with wind power injection.

Results obtained with Runge-Kutta method are indicated in Table 1, in which the penetration level is the ratio between the total active power of all wind farms installed and the total power of the power system.

In comparison, the system performance with active wind power modulation is better, the results indicate that the wind power control can significantly improve the oscillation and increase the CCT.

![Table 1. CCT for various wind power injected (Pwind) in power system](table_url)

5. Conclusion

In this paper, a new control strategy of wind power has been successfully applied to improve the power system transient stability. The aggregated wind farm model is used for wind farms modeling. The input power to the DFIG is computed at each integration step. Results indicate that the wind power control can significantly improve the oscillation and increase the CCT, the efficiency of the wind farms is more important when the percentage of the installed wind power over the total production is higher.

**References**


Appendix

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Mutual inductance,</td>
</tr>
<tr>
<td>p</td>
<td>Number of pole pairs,</td>
</tr>
<tr>
<td>J</td>
<td>Inertia,</td>
</tr>
<tr>
<td>D</td>
<td>Damping constant of ( i )th generator,</td>
</tr>
<tr>
<td>( E_d )</td>
<td>d-axis transient emfs of ( i )th generator;</td>
</tr>
<tr>
<td>( E_q )</td>
<td>q-axis transient emfs of ( i )th generator;</td>
</tr>
<tr>
<td>( h_i )</td>
<td>Inertia constant of ( i )th generator,</td>
</tr>
<tr>
<td>( I_d )</td>
<td>d-axis generator currents of ( i )th generator,</td>
</tr>
<tr>
<td>( I_q )</td>
<td>q-axis generator currents of ( i )th generator,</td>
</tr>
<tr>
<td>( r_m )</td>
<td>Mechanical input power of ( i )th generator,</td>
</tr>
<tr>
<td>( P_i )</td>
<td>Electrical power of ( i )th generator,</td>
</tr>
<tr>
<td>( T_{dm}, T_{qn} )</td>
<td>d-axis and q-axis transient time constants of ( i )th generator,</td>
</tr>
<tr>
<td>( V_{ps} )</td>
<td>Field voltage controlled by a voltage regulator of ( i )th generator,</td>
</tr>
<tr>
<td>( x_{ds}, x_{qs} )</td>
<td>d-axis and q-axis generators' transient reactance of ( i )th generator,</td>
</tr>
<tr>
<td>( \delta_i )</td>
<td>Rotor angle of ( i )th generator,</td>
</tr>
<tr>
<td>( \omega_{ps} )</td>
<td>Rotating angular velocity,</td>
</tr>
<tr>
<td>( \omega_i )</td>
<td>Rotor angular velocity of ( i )th generator,</td>
</tr>
<tr>
<td>( R )</td>
<td>Speed regulation,</td>
</tr>
<tr>
<td>( T_{s}, T_{r} )</td>
<td>Time constants regulator,</td>
</tr>
<tr>
<td>( p )</td>
<td>Mechanical power,</td>
</tr>
<tr>
<td>( P_{m}(0) )</td>
<td>Initial mechanical power;</td>
</tr>
<tr>
<td>( P_1, P_2 )</td>
<td>Intermediate state variables,</td>
</tr>
<tr>
<td>( DB_{1} )</td>
<td>Dead band,</td>
</tr>
<tr>
<td>( K_R )</td>
<td>Regulator gain,</td>
</tr>
<tr>
<td>( K_A )</td>
<td>Amplifier gain,</td>
</tr>
<tr>
<td>( K_e )</td>
<td>Exciter gain,</td>
</tr>
<tr>
<td>( K_F )</td>
<td>Stabilizer gain,</td>
</tr>
<tr>
<td>( T_{s} )</td>
<td>Time constant of regulator ,</td>
</tr>
<tr>
<td>( T_{a} )</td>
<td>Time constant of amplifier,</td>
</tr>
<tr>
<td>( T_{e} )</td>
<td>Time constant of exciter,</td>
</tr>
<tr>
<td>( T_{c} )</td>
<td>Time constant of stabilizer,</td>
</tr>
<tr>
<td>( V_i )</td>
<td>Regulator output voltage,</td>
</tr>
<tr>
<td>( V_{oa} )</td>
<td>Initial amplifier output voltage,</td>
</tr>
<tr>
<td>( V_{pa} )</td>
<td>Amplifier output voltage,</td>
</tr>
<tr>
<td>( V_c )</td>
<td>Stator voltage,</td>
</tr>
<tr>
<td>( V_2 )</td>
<td>Stabilizer output voltage,</td>
</tr>
<tr>
<td>( V_{oa}, V_{pa} )</td>
<td>d-axis and q-axis of ( i )th generator,</td>
</tr>
</tbody>
</table>