Improvement performances of Doubly Fed Induction Generator via MPPT Strategy using Model Reference Adaptive Control based Direct Power Control with Space Vector Modulation

F. AMRANE¹, A. CHAIBA¹, A. CHEBABHI²
¹LAS Research Laboratory, Setif 1University, Algeria.
²ICEPS Laboratory, Department of Electrical Engineering, Djillali Liabes University
E-mail : amrane_fayssal@live.fr

Abstract— In this paper Model Reference Adaptive Control (MRAC) for Wind energy conversion system (WECS) doubly fed induction generator (DFIG) is proposed using direct power control (DPC) based on space-vector modulation (SVM) afor fixed switching frequency in the d-q reference frame is proposed for wind generation application using MPPT strategy. First, a mathematical model of the doubly-fed induction generator written in an appropriate d-q reference frame is established to investigate simulations. In order to control the DFIG direct power control and space-vector modulation (DPC-SVM) are combined to replace the hysteresis controllers used in the original DPC drive, the active and reactive powers are controllers by a PID regulators. The performances of MRAC which is based on the DPC-SVM combination are investigated and compared to those obtained from the PID regulators Results obtained in Matlab/Simulink® environment show that the MRAC is more robust, superior dynamic performance and hence found to be a suitable replacement of the conventional controller for the high performance drive applications.

Keywords— Model reference adaptive control (MRAC), Wind energy conversion system (WECS), Doubly fed induction generator (DFIG), Direct power control (DPC), Space vector modulation (SVM), Maximum power point tracking (MPPT).

1. Introduction

Wind energy conversion system (WECSs) based on the doubly fed induction generator (DFIG) dominated the wind power generations due to the outstanding advantages, including small converters rating around 30% of the generator rating, lower converter cost. Several novel control strategies have been investigated in order to improve the DFIG operation performance [1-2]. Nowadays, since DFIG-based WECSs are mainly installed in remote and rural areas [2]. In literature [3] vector control is the most popular method used in the DFIG-based wind turbines. The DPC is simple and alternative approach control formulation that does not require decomposition into symmetrical components; the DPC schemes have been proved to be preponderant for DFIGs due to the simple implementation [4]. A new modeling approach based on independent from the flux measurement has been proposed in [5], in order to conclude input-to-state stability and convergence to the desired equilibrium. In [6] the direct power control (DPC) of a single voltage source converter based on doubly fed induction generator (DFIG) without using a rotor position sensor. Simulation and experimental results of a 3.7 kW DFIG system are presented to demonstrate the performance of the proposed WECS under steady state.

A schematic diagram of wind turbine system with a DFIG is shown in figure 1.

![Fig. 1. Schematic diagram of wind turbine system with a DFIG.](image-url)
Predictive Direct Power Control (MPDPC) [7-8], Sliding mode Direct Power Control [9], Sliding mode control [10-11] and Backstepping Control [12].

The maximum power point tracking (MPPT) strategy takes big importance in last researches, as in [13] the authors propose a modified perturbation and observation (P&O) maximum power point tracking (MPPT) algorithm in order to improve the divergence from peak power and the rapidity/efficiency trade-off under a fast variation of the wind speed for small WECSs.

In [14] the authors have presented a model reference adaptive control (MRAC) speed estimator for speed sensorless direct torque and flux control of an induction motor, to achieve high performance sensorless drive. Other advantages of MRAC are it has the ability to control the system that undergoes parameter and/or environmental variations. This is based on advantages of MRAC in which the desired transient specification is given in terms of reference model so that it’s give selectivity to designers to set the desired transient performance by adjusting the reference model either to have fast or slow transient output.

In this paper, MRAC is used for adjusting rotor current of DFIG. This paper is organized as follows; firstly the modeling of the turbine is presented in section 2. In section 3, the mathematical model of DFIG is given. Section 4 presents Direct Power Control of DFIG which is based on the orientation of the stator flux vector along the axe ‘d’. In section 5 the Model Reference Adaptive Control (MRAC) is established to control the rotor currents after being compared by conventional regulators PID. In section 6, computer simulation results are shown and discussed. Finally, the reported work is concluded in section 7.

2. Model of the Turbine

The wind turbine input power usually is:

\[P_v = \frac{1}{2} \rho \cdot S_w \cdot v^3 \]

(1)

Where \(\rho \) is air density; \(S_w \) is wind turbine blades swept area in the wind; \(v \) is wind speed.

The output mechanical power of wind turbine is:

\[P_m = C_p \cdot P_v = \frac{1}{2} \rho \cdot C_p \cdot S_w \cdot v^3 \]

(2)

Where \(C_p \) represents the wind turbine power conversion efficiency. It is a function of the tip speed ratio \(\lambda \) and the blade pitch angle \(\beta \) in a pitch-controlled wind turbine. \(\lambda \) is defined as the ratio of the tip speed of the turbine blades to wind speed. \(\lambda \) is given by:

\[\lambda = \frac{\Omega r_\ell}{v} \]

(3)

Where \(R \) is blade radius, \(\Omega \) is angular speed of the turbine. \(C_p \) can be described as [15]:

\[C_p = (0.5 - 0.0167 \cdot (\beta - 2)) \cdot \sin \left[\frac{\pi \cdot (\lambda + 0.1)}{18.5 - 0.3 \cdot (\beta - 2)} \right] - 0.00184 \cdot (\lambda - 3) \cdot (\beta - 2) \]

(4)

The maximum value of \(C_p \) \((C_{p,\text{max}} = 0.4785)\) is achieved for \(\beta = 0 \) degree and for \(\lambda_{\text{opt}} = 8.107 \). This point corresponds at the maximum power point tracking (MPPT).

![Fig. 2. Aerodynamic power coefficient variation \(C_p \) against tip speed ratio \(\lambda \) and pitch angle \(\beta \).]

In our work we use the wind profile, as shown in Fig.3:

![Fig. 3. Wind profile (Wind Speed).]

After the simulation of the wind turbine using this wind profile, we test the robustness of our MPPT algorithm, we have as results the curve of power coefficient \(C_p \) versus time; this latter achieved the maximum value mentioned in Fig.2 \((C_{p,\text{max}} = 0.4785)\) despite the variation of the wind

3. Mathematical Model of DFIG

The generator chosen for the conversion of wind energy is a double-fed induction generator, DFIG modeling described in the two-phase reference (Park). The general electrical state model of the induction machine obtained using Park transformation is given by the following equations, [16-20]:

Stator and rotor voltages:

\[V_{sd} = R_s \cdot I_{sd} + \frac{d}{dt} \varphi_{sd} - \omega_s \cdot \varphi_{sq} \]

(5)

\[V_{sq} = R_s \cdot I_{sq} + \frac{d}{dt} \varphi_{sq} + \omega_s \cdot \varphi_{sd} \]

(6)
Stator and rotor fluxes:
\[\Phi_{sd} = L_s \cdot i_s + L_m \cdot i_{rd} \]
\[\Phi_{sq} = L_s \cdot i_q + L_m \cdot i_{rd} \]
\[\Phi_{rd} = L_r \cdot i_r + L_m \cdot i_{sd} \]
\[\Phi_{rq} = L_r \cdot i_q + L_m \cdot i_{sq} \]

The electromagnetic torque is given by:
\[T_e = P \cdot L_m \cdot (i_{rq} - i_{sq} - i_{rd}) \]
And its associated motion equation is:
\[T_e - T_l = J \cdot \frac{d\Omega}{dt} + f \cdot \Omega \]
Where: \(T_l \) is the load torque, \(J \) is total inertia in DFIG’s rotor, \(\Omega \) is mechanical speed, and \(G \) is gain of gear box.

The voltage vectors, produced by a three-phase PWM inverter, divide the space vector plane into six sectors, as shown in Fig. 5 [15].

![Fig. 5. The diagram of voltage space vectors in αβ plan.](image)

In every sector, each voltage vector is synthesized by the basic space voltage vector of the 2 sides of the sector and 1 zero vector. For example, in the first sector, \(V_{s0} \) are the synthesized voltage space vector and are expressed by:
\[V_{s\beta} = \frac{V_1}{\tau_S} + \frac{V_2}{\tau_S} \]

After projection of the vectors \(V_{a\beta}, V_s \) and \(V_{\beta} \) we have:
\[V_a = \|V_{a\beta}\| \cdot \cos(\theta) = \frac{V_1}{\tau_S} \cdot \left(\frac{V_1}{\tau_S} \cdot V_a \right) + \frac{V_2}{\tau_S} \cdot \left(\frac{V_2}{\tau_S} \cdot V_a \right) \cdot \cos \frac{\pi}{3} \]
\[V_p = \|V_{a\beta}\| \cdot \sin(\theta) = \frac{V_2}{\tau_S} \cdot \left(\frac{V_1}{\tau_S} \cdot V_a \right) \cdot \sin \frac{\pi}{3} \]
\[T_1 = \frac{(\Phi_{sq} - \Phi_{sd})}{2 \pi \sigma} \cdot T_S \]
\[T_2 = \frac{\Phi_{rd}}{\tau_{dc}} \cdot T_S \]

4. Direct Power Control of DFIG

In this section, the DFIG model can be described by the following state equations in the synchronous reference frame whose axis \(d \) is aligned with the stator flux vector as shown in Fig. 6. (\(\Phi_{sd} = \Phi_s \)) and (\(\Phi_{sq} = 0 \)) [17].

By neglecting resistances of the stator phases the stator voltage will be expressed by:
\[V_{sd} = 0 \text{ and } V_{sq} = V_p \equiv \omega_s \cdot \Phi_s \]

We lead to an uncoupled power control; where, the transversal component \(i_{rq} \) of the rotor current controls the active power. The reactive power is imposed by the direct component \(i_{rd} \) as shown in Fig. 7:
\[P_s = -V_p \cdot \frac{L_m}{L_s} \cdot i_{rq} \]
\[Q_s = \frac{V^2_p}{\omega_s L_s} - V_p \cdot \frac{L_m}{L_s} \cdot i_{rd} \]

The arrangement of the equations gives the expressions of the voltages according to the rotor currents as in shown in Fig. 8:
\[V_{rd} = R_r \cdot i_{rd} + \left(L_r - \frac{L_m}{L_s} \right) \cdot \frac{di_{rd}}{dt} - g \cdot \omega_s \cdot \left(L_r - \frac{L_m}{L_s} \right) \cdot i_{rq} \]
\[V_{rq} = R_r \cdot i_{rq} + \left(L_r - \frac{L_m}{L_s} \right) \cdot \frac{di_{rq}}{dt} + g \cdot \omega_s \cdot \left(L_r - \frac{L_m}{L_s} \right) \cdot i_{rd} + g \cdot \frac{L_m^2}{L_s} \cdot i_{rd} \]
\[i_{rd} = -\frac{1}{\sigma \cdot i_{rd}} \cdot i_{rq} \cdot g \cdot \omega_s \cdot i_{rq} + \frac{1}{\sigma \cdot i_{rd}} \cdot V_{rd} \]
\[i_{rq} = -\frac{1}{\sigma} \left(i_{rq} + \frac{L_m}{L_s} \right) \cdot \frac{di_{rq}}{dt} - g \cdot \omega_s \cdot i_{rd} + \frac{1}{\sigma \cdot i_{rd}} \cdot V_{rq} \]

with:
\[T_r = \frac{L_s}{R_s}, \; T_s = \frac{L_s}{R_s}, \; \sigma = 1 - \frac{1}{\frac{L_m}{L_s} \cdot \tau_{dc}} \]

where: \(\Phi_{sd}, \Phi_{sq} \) are stator flux components, \(\Phi_{rd}, \Phi_{rq} \) are rotor flux components, \(V_{sd}, V_{sq} \) are stator voltage components, \(V_{rd}, V_{rq} \) are rotor voltage components, \(R_s, R_r \) are stator and rotor resistances, \(L_s, L_r \) are stator and rotor inductances, \(L_m \) is mutual inductance, \(\sigma \) is leakage factor, \(P \) is number of pole pairs, \(\omega_s \) is the stator pulsation, \(\omega \) is the rotor pulsation, \(f \) is the friction coefficient, \(T_r \) and \(T_s \) are stator and rotor time-constant, and \(g \) is the slid.
5. Model Reference Adaptive Control (MRAC)

The system studied in this paper is based on a first-order linear plant approximation given by [18]:

$$\dot{x}(t) = -ax(t) + bu(t)$$ \hspace{1cm} (29)

Where \(x(t)\) is the plant state, \(u(t)\) is the control signal and \(a\) and \(b\) are the plant parameters. The control signal is generated from both the state variable and the reference signal \(r(t)\), multiplied by the adaptive control gains \(K\) and \(Kr\) such that

$$u(t) = K(t).x(t) + Kr(t).r(t)$$ \hspace{1cm} (30)

Where \(K(t)\) is the feedback adaptive gain and \(Kr(t)\) the feed forward adaptive gain. The plant is controlled to follow the output from a reference model:

$$x_m(t) = a_m x_m(t) + b_mr(t)$$ \hspace{1cm} (31)

Where \(x_m\) is the state of the reference model and \(a_m\) and \(b_m\) are the reference model parameters which are specified by the controller designer. The object of the MRAC algorithm is for \(x_e \rightarrow 0\) as \(t \rightarrow \infty\), where \(x_e = x_m - x\) is the error signal. The dynamics of the system may be rewritten in terms of the error such that

$$\dot{x}_e(t) = a_m x_e(t) + (a - a_m - bK(t))x(t) + (b_m - bK_r(t))r(t)$$ \hspace{1cm} (32)

Using Equations (27), (28) and (29), it can be seen that for exact matching between the plant and the reference model, the following relations hold

$$K = K^E = \frac{a - a_m}{b}$$ \hspace{1cm} (33)

$$K_r = K_r^E = \frac{b_m}{b}$$ \hspace{1cm} (34)

Where \(K^E\) denotes the (constant) Erzberger gains [19].

Equations (30) and (31) can be used to express Equation (29) as:

$$\dot{x}_e(t) = -a_m x_e(t) + b(K^E - K)(x_m - x_e) + b(K^E - K)r$$ \hspace{1cm} (35)

For general model reference adaptive control, the adaptive gains are commonly defined in a proportional plus integral formulation

$$K(e, t) = \int_0^t a \cdot y_e \cdot I_{rdq}^*dt + \beta \cdot y_e \cdot l_{rdq}^*$$ \hspace{1cm} (36)

$$K_r(e, t) = \int_0^t a \cdot y_e \cdot I_{dqref}^* dt + \beta \cdot y_e \cdot l_{dqref}^*$$ \hspace{1cm} (37)

Where \(a\) and \(\beta\) are adaptive control weightings representing the adaptive effort, \(y_e\) is a scalar weighted function of the error state and its derivatives, \(y_e = C_e \cdot x_e\), where \(C_e\) can be chosen to ensure the stability of the feed forward block.

The equivalent scheme of MRAC for adjusting rotor currents of DPC in this work is shown in Fig 9.
6. Simulation Results

DFIG used in this work is a 4kW whose nominal parameters are indicated in Table.1. And the wind turbine used in this work is a 10 kW whose parameters are indicated in Table.2.

Fig. 11. Stator Active power Ps.

Fig. 12. Stator Reactive power Qs.

Fig. 13. Stator Currents Is_abc.

Fig. 14. Rotor Currents Ir_abc.

Fig. 15. Rotor direct and transversal currents ir_dq.

Fig. 16. Stator direct and transversal currents is_dq.

Fig. 17. Rotor direct and transversal flux ϕr_dq.

Fig. 18. Tracking errors of stator active and reactive powers.

Fig.11 presents the stator active power and its reference profiles injected into the grid using SVM, the stator active power reference is extracted from MPPT strategy. The stator reactive power and its reference profiles using SVM are presented in Fig.12. represent power factor unity equal to 0Var. It is clear that the measure powers (active and reactive) have good chase with high performance (little error, and short response time) as for as their reference powers.

Fig.13 represents the stator current Is_abc, we remark the sinusoidal form of the three phases rotor currents.
Fig. 14 shows the rotor direct current and the rotor transversal current respectively. We remark that the rotor direct and transversal currents have the inverse diagrams as for reactive and active power.

Fig. 16 shows the stator direct current and the stator transversal current. We observe that the stator direct and transversal currents have the same diagrams of reactive and active power respectively, so they represent the images of reactive and active power respectively.

Fig. 17 shows the rotor direct flux and the rotor transversal flux. They represent the inverse diagrams of reactive and active power respectively.

Fig. 18 shows the tracking errors of active and reactive powers. We observe a lower error of active and reactive powers respectively, so they represent the images of active power.

Table 1. Parameters of the DFIG.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power</td>
<td>4 kWatts</td>
</tr>
<tr>
<td>Stator Resistance</td>
<td>Rs = 1.2Ω</td>
</tr>
<tr>
<td>Rotor Resistance</td>
<td>Lr = 1.8Ω</td>
</tr>
<tr>
<td>Stator Inductance</td>
<td>Ls = 0.1554 H.</td>
</tr>
<tr>
<td>Rotor Inductance</td>
<td>Lr = 0.1558 H.</td>
</tr>
<tr>
<td>Mutual Inductance</td>
<td>Lm = 0.15 H.</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>Vs = 220/380 V</td>
</tr>
<tr>
<td>Number of Pole pairs</td>
<td>P = 2</td>
</tr>
<tr>
<td>Rated Speed</td>
<td>N=1440 rpm</td>
</tr>
<tr>
<td>Friction Coefficient</td>
<td>f=0.00 N*m/sec</td>
</tr>
<tr>
<td>The moment of inertia</td>
<td>J=0.2 kg*m^2</td>
</tr>
<tr>
<td>Slid</td>
<td>g=0.015</td>
</tr>
</tbody>
</table>

Table 2. Parameters of the Turbine.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power</td>
<td>10 kWatts</td>
</tr>
<tr>
<td>Number of Pole pairs</td>
<td>P = 3</td>
</tr>
<tr>
<td>Blade diameter</td>
<td>R = 3m</td>
</tr>
<tr>
<td>Gain</td>
<td>G=3.9</td>
</tr>
<tr>
<td>The moment of inertia</td>
<td>J=0.00655 kg*m^2</td>
</tr>
<tr>
<td>Friction coefficient</td>
<td>f=0.017 N*m/sec</td>
</tr>
<tr>
<td>Air density</td>
<td>p=1.22 Kg/m^3</td>
</tr>
</tbody>
</table>

7. Conclusion

In this paper Model Reference Adaptive Control for doubly fed induction generator (DFIG) based direct power control with a SVM has been proposed for wind generation application. Direct power control with MPPT strategy has been achieved by adjusting active and reactive powers and rotor currents. The performances of MRAC which is based on the DPC algorithm has been investigated and compared to those obtained from the PID controller. Simulation results obtained in Matlab/ Simulink® have shown that the MRAC is more robust, lower errors, short response time and superior dynamic performance.

8. References

